A (p, q)-ANALOG OF POLY-EULER POLYNOMIALS AND SOME RELATED POLYNOMIALS

被引:0
作者
Komatsu, T. [1 ]
Ramirez, J. L. [2 ]
Sirvent, V. F. [3 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Sci, Dept Math, Hangzhou, Peoples R China
[2] Univ Nacl Colombia, Bogota, Colombia
[3] Univ Catolica Norte, Antofagasta, Chile
关键词
R-WHITNEY NUMBERS; BERNOULLI NUMBERS; STIRLING NUMBERS; CAUCHY NUMBERS; 1ST;
D O I
10.1007/s11253-020-01799-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a (p, q)-analog of the poly-Euler polynomials and numbers by using the (p, q)-polylogarithm function. These new sequences are generalizations of the poly-Euler numbers and polynomials. We present several combinatorial identities and properties of these new polynomials and also show some relations with (p, q)-poly-Bernoulli polynomials and (p, q)-poly-Cauchy polynomials. The (p, q)-analogs generalize the well-known concept of q-analog.
引用
收藏
页码:536 / 554
页数:19
相关论文
共 40 条
  • [1] Andrews G.E., 1999, ENCY MATH APPL, V71
  • [2] [Anonymous], 2012, RIMS KOKYUROKU BES B
  • [3] [Anonymous], 2012, GEN MATH
  • [4] [Anonymous], 2012, E W J MATH
  • [5] (ρ, q)-Volkenborn integration
    Araci, Serkan
    Duran, Ugur
    Acikgoz, Mehmet
    [J]. JOURNAL OF NUMBER THEORY, 2017, 171 : 18 - 30
  • [6] POLYLOGARITHMS AND POLY-BERNOULLI POLYNOMIALS
    Bayad, Abdelmejid
    Hamahata, Yoshinori
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2011, 65 (01) : 15 - 24
  • [7] Brewbaker C., 2008, Integers, V8, pA02
  • [8] Burban I.M., 1994, Integral Transform. Spec. Funct, V2, P15, DOI DOI 10.1080/10652469408819035
  • [9] CARLITZ L, 1980, FIBONACCI QUART, V18, P147
  • [10] Generalizations of poly-Bernoulli and poly-Cauchy numbers
    Cenkci M.
    Young P.T.
    [J]. European Journal of Mathematics, 2015, 1 (4) : 799 - 828