An optimal algorithm for Euclidean shortest paths in the plane

被引:178
作者
Hershberger, J
Suri, S
机构
[1] Mentor Graph Corp, Wilsonville, OR 97070 USA
[2] Washington Univ, Dept Comp Sci, St Louis, MO 63130 USA
关键词
shortest path; shortest path map; Euclidean distance; obstacle avoidance; quadtree; planar subdivision; weighted distance;
D O I
10.1137/S0097539795289604
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose an optimal-time algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(n log n) and requires O(n log n) space, where n is the total number of vertices in the obstacle polygons. The algorithm is based on an efficient implementation of wavefront propagation among polygonal obstacles, and it actually computes a planar map encoding shortest paths from a fixed source point to all other points of the plane; the map can be used to answer single-source shortest path queries in O(log n) time. The time complexity of our algorithm is a significant improvement over all previously published results on the shortest path problem. Finally, we also discuss extensions to more general shortest path problems, involving nonpoint and multiple sources.
引用
收藏
页码:2215 / 2256
页数:42
相关论文
共 24 条
[1]  
[Anonymous], P 23 ANN IEEE S FDN
[2]  
[Anonymous], 1985, P 1 ANN S COMP GEOM
[3]  
Asano T., 1985, Transactions of the Institute of Electronics and Communication Engineers of Japan, Section E (English), VE68, P557
[4]   Visibility of Disjoint Polygons [J].
Asano, Takao ;
Asano, Tetsuo ;
Guibas, Leonidas ;
Hershberger, John ;
Imai, Hiroshi .
ALGORITHMICA, 1986, 1 (1-4) :49-63
[5]  
Bern M., 1990, Proceedings. 31st Annual Symposium on Foundations of Computer Science (Cat. No.90CH2925-6), P231, DOI 10.1109/FSCS.1990.89542
[6]  
CHEW LP, 1989, J COMPUT SYST SCI, V39, P205, DOI 10.1016/0022-0000(89)90044-5
[7]  
Clarkson Ken, 1987, PROC 19 STOC, P56
[8]  
CORMEN T, 1993, INTRO ALGORITHMS
[9]  
Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[10]   OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION [J].
EDELSBRUNNER, H ;
GUIBAS, LJ ;
STOLFI, J .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :317-340