High Lithium Ion Transport Through rGO-Wrapped LiNi0.6Co0.2Mn0.2O2 Cathode Material for High-Rate Capable Lithium Ion Batteries

被引:29
作者
Ahn, Wook [1 ]
Seo, Min-Ho [2 ]
Tuan Kiet Pham [1 ]
Quoc Hung Nguyen [1 ]
Van Tung Luu [1 ]
Cho, Younghyun [1 ]
Lee, Young-Woo [1 ]
Cho, Namchul [1 ]
Jeong, Soon-Ki [1 ]
机构
[1] Soonchunhyang Univ, Dept Energy Syst Engn, Asan, South Korea
[2] Korea Inst Energy Res, New & Renewable Energy Res Div, Hydrogen & Fuel Cell Ctr, Daejeon, South Korea
关键词
lithium ion battery; graphene-based cathode composite; nickel-rich; LiNi0.6Co0.2Mn0.2O2; galvanostatic intermittent titration technique; GRAPHENE; HYBRID; ELECTRODE; PERFORMANCE; KINETICS; STORAGE; ANODE;
D O I
10.3389/fchem.2019.00361
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this work, we show an effective ultrasonication-assisted self-assembly method under surfactant solution for a high-rate capable rGO-wrapped LiNi0.6Co0.2Mn0.2O2 (Ni-rich cathode material) composite. Ultrasonication indicates the pulverization of the aggregated bulk material into primary nanoparticles, which is effectively beneficial for synthesizing a homogeneous wrapped composite with rGO. The cathode composite demonstrates a high initial capacity of 196.5 mAh/g and a stable capacity retention of 83% after 100 cycles at a current density of 20 mA/g. The high-rate capability shows 195 and 140 mAh/g at a current density of 50 and 500 mA/g, respectively. The high-rate capable performance is attributed to the rapid lithium ion diffusivity, which is confirmed by calculating the transformation kinetics of the lithium ion by galvanostatic intermittent titration technique (GITT) measurement. The lithium ion diffusion rate (D-Li) of the rGO-wrapped LiNi0.6Co0.2Mn0.2O2 composite is ca. 20 times higher than that of lithium metal plating on anode during the charge procedure, and this is demonstrated by the high interconnection of LiNi0.6Co0.2Mn0.2O2 and conductive rGO sheets in the composite. The unique transformation kinetics of the cathode composite presented in this study is an unprecedented verification example of a high-rate capable Ni-rich cathode material wrapped by highly conductive rGO sheets.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Hollow Multivoid Nanocuboids Derived from Ternary Ni-Co-Fe Prussian Blue Analog for Dual-Electrocatalysis of Oxygen and Hydrogen Evolution Reactions [J].
Ahn, Wook ;
Park, Moon Gyu ;
Lee, Dong Un ;
Seo, Min Ho ;
Jiang, Gaopeng ;
Cano, Zachary P. ;
Hassan, Fathy Mohamed ;
Chen, Zhongwei .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)
[2]   Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors [J].
Ahn, Wook ;
Lee, Dong Un ;
Li, Ge ;
Feng, Kun ;
Wang, Xiaolei ;
Yu, Aiping ;
Lui, Gregory ;
Chen, Zhongwei .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (38) :25297-25305
[3]   Sulfur Nanogranular Film-Coated Three-Dimensional Graphene Sponge-Based High Power Lithium Sulfur Battery [J].
Ahn, Wook ;
Seo, Min Ho ;
Jun, Yun-Seok ;
Lee, Dong Un ;
Hassan, Fathy M. ;
Wang, Xiaolei ;
Yu, Aiping ;
Chen, Zhongwei .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) :1984-1991
[4]   Morphology-controlled graphene nanosheets as anode material for lithium-ion batteries [J].
Ahn, Wook ;
Song, Hoon Sub ;
Park, Sang-Hoon ;
Kim, Kwang-Bum ;
Shin, Kyoung-Hee ;
Lim, Sung Nam ;
Yeon, Sun-Hwa .
ELECTROCHIMICA ACTA, 2014, 132 :172-179
[5]   Combustion-synthesized LiNi0.6Mn0.2Co0.2O2 as cathode material for lithium ion batteries [J].
Ahn, Wook ;
Lim, Sung Nam ;
Jung, Kyu-Nam ;
Yeon, Sun-Hwa ;
Kim, Kwang-Bum ;
Song, Hoon Sub ;
Shin, Kyoung-Hee .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 609 :143-149
[6]   Atomic-Scale Observation of LiFePO4 and LiCoO2 Dissolution Behavior in Aqueous Solutions [J].
Byeon, Pilgyu ;
Bae, Hyung Bin ;
Chung, Hee-Suk ;
Lee, Sang-Gil ;
Kim, Jin-Gyu ;
Lee, Hyeon Jeong ;
Choi, Jang Wook ;
Chung, Sung-Yoon .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (45)
[7]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[8]   Going electric: Expert survey on the future of battery technologies for electric vehicles [J].
Catenacci, Michela ;
Verdolini, Elena ;
Bosetti, Valentina ;
Fiorese, Giulia .
ENERGY POLICY, 2013, 61 :403-413
[9]   Electrochemical Properties of the LiNi0.6Co0.2Mn0.2O2 Cathode Material Modified by Lithium Tungstate under High Voltage [J].
Fu, Jiale ;
Mu, Daobin ;
Wu, Borong ;
Bi, Jiaying ;
Cui, Hui ;
Yang, Hao ;
Wu, Hanfeng ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (23) :19704-19711
[10]   Determination of state of charge-dependent asymmetric Butler-Volmer kinetics for LixCoO2 electrode using GITT measurements [J].
Hess, A. ;
Roode-Gutzmer, Q. ;
Heubner, C. ;
Schneider, M. ;
Michaelis, A. ;
Bobeth, M. ;
Cuniberti, G. .
JOURNAL OF POWER SOURCES, 2015, 299 :156-161