A comparison of the Yb3+ absorption and upconversion excitation spectra for both the cubic and hexagonal phases of NaYE4:Yb3+/Er3+ nanoparticles

被引:13
作者
Balabhadra, Sangeetha [1 ,2 ]
Reid, Michael F. [1 ,2 ]
Golovko, Vladimir [1 ,2 ]
Wells, Jon-Paul R. [1 ,2 ]
机构
[1] Univ Canterbury, Sch Phys & Chem Sci, PB 4800, Christchurch 8140, New Zealand
[2] Dodd Walls Ctr Photon & Quantum Technol, Dunedin, New Zealand
关键词
Nanoparticles; Nanorods; NaYF4; Upconversion fluorescence; Absorption; Upconversion excitation; LUMINESCENCE; LANTHANIDE; NANOCRYSTALS; MULTICOLOR; DEPENDENCE; DESIGN;
D O I
10.1016/j.optmat.2020.110050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on studies of the Yb3+ ion absorption in Er3+ co-doped cubic and hexagonal phase NaYF4 upconverting nanoparticles using high-resolution absorption measurements. The Yb3+ absorption spectra have intense maxima at 10266.1 cm(-1) and 10237.0 cm(-1) for the cubic and hexagonal phases respectively, which is far from the most commonly used laser diode wavelength. Resonant excitation of these absorption maxima yields a similar to 40% (cubic) and similar to 34% (hexagonal) enhancement of the H-2(11/2), S-4(3/2) and F-4(9/2) visible upconversion fluorescence. The hexagonal phase material exhibits Er3+ upconversion fluorescence which is a factor of 10(4) brighter than that obtained from the cubic phase nanoparticles, irrespective of their sizes, morphologies and Ln(3+) ion distribution. The upconversion excitation spectra show preliminary evidence of excited state absorption features when monitoring F-4(9/2) fluorescence for the hexagonal phase material.
引用
收藏
页数:7
相关论文
共 35 条
  • [1] Upconversion and anti-stokes processes with f and d ions in solids
    Auzel, F
    [J]. CHEMICAL REVIEWS, 2004, 104 (01) : 139 - 173
  • [2] Absorption spectra, defect site distribution and upconversion excitation spectra of CaF2/SrF2/BaF2:Yb3+:Er3+ nanoparticles
    Balabhadra, Sangeetha
    Reid, Michael F.
    Golovko, Vladimir
    Wells, Jon-Paul R.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834
  • [3] Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles
    Boyer, John-Christopher
    van Veggel, Frank C. J. M.
    [J]. NANOSCALE, 2010, 2 (08) : 1417 - 1419
  • [4] Brites CDS, 2016, NAT NANOTECHNOL, V11, P851, DOI [10.1038/nnano.2016.111, 10.1038/NNANO.2016.111]
  • [5] Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics
    Chen, Guanying
    Qju, Hailong
    Prasad, Paras N.
    Chen, Xiaoyuan
    [J]. CHEMICAL REVIEWS, 2014, 114 (10) : 5161 - 5214
  • [6] Chen X., 2001, ADV ENERGY TRANSFER
  • [7] Upconverter solar cells: materials and applications
    de Wild, J.
    Meijerink, A.
    Rath, J. K.
    van Sark, W. G. J. H. M.
    Schropp, R. E. I.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) : 4835 - 4848
  • [8] All-In-One Optical Heater-Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er3+ Emission and Blackbody Radiation
    Debasu, Mengistie L.
    Ananias, Duarte
    Pastoriza-Santos, Isabel
    Liz-Marzan, Luis M.
    Rocha, J.
    Carlos, Luis D.
    [J]. ADVANCED MATERIALS, 2013, 25 (35) : 4868 - 4874
  • [9] Deng RR, 2015, NAT NANOTECHNOL, V10, P237, DOI [10.1038/nnano.2014.317, 10.1038/NNANO.2014.317]
  • [10] Hydrothermal synthesis of ordered β-NaYF4 nanorod self-assemblies with multicolor up- and down-conversions
    Ding, Mingye
    Lu, Chunhua
    Song, Yan
    Ni, Yaru
    Xu, Zhongzi
    [J]. CRYSTENGCOMM, 2014, 16 (06): : 1163 - 1173