Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights

被引:42
作者
Buyarov, VS [1 ]
Dehesa, JS
Martínez-Finkelshtein, A
Saff, EB
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow 117901, Russia
[3] Inst Carlos I Fis Teor & Computac, Madrid, Spain
[4] Univ Granada, Dept Fis Moderna, E-18071 Granada, Spain
[5] Univ Almeria, Almeria, Spain
[6] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
D O I
10.1006/jath.1998.3315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior as n --> infinity of the entropy integral S-n = - integral p(n, n)(2)(x) ln p(n, n)(2)(x) w(n)(x) dx, where p(n, n) is the nth degree polynomial orthonormal with respect to a Jacobi or Laguerre weight function w(n)(x) whose parameters grow with n. For this purpose we use the weak-* convergence of the measures p(n, n)(2)(x)w(n)(x) to the Robin distribution of the support of the equilibrium measure in an external field, arising from the limit of the nth root of the sequence of weights. (C) 1999 Academic Press.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 24 条
[21]  
SZEGO G, 1975, AM MATH SOC C PUBL, V23
[22]   ENTROPY OF ORTHOGONAL POLYNOMIALS WITH FREUD WEIGHTS AND INFORMATION ENTROPIES OF THE HARMONIC-OSCILLATOR POTENTIAL [J].
VANASSCHE, W ;
YANEZ, RJ ;
DEHESA, JS .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4106-4118
[23]   WEAK-CONVERGENCE OF ORTHOGONAL POLYNOMIALS [J].
VANASSCHE, W .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1995, 6 (01) :7-23
[24]   POSITION AND MOMENTUM INFORMATION ENTROPIES OF THE D-DIMENSIONAL HARMONIC-OSCILLATOR AND HYDROGEN-ATOM [J].
YANEZ, RJ ;
VANASSCHE, W ;
DEHESA, JS .
PHYSICAL REVIEW A, 1994, 50 (04) :3065-3079