Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights

被引:42
作者
Buyarov, VS [1 ]
Dehesa, JS
Martínez-Finkelshtein, A
Saff, EB
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Russian Acad Sci, MV Keldysh Appl Math Inst, Moscow 117901, Russia
[3] Inst Carlos I Fis Teor & Computac, Madrid, Spain
[4] Univ Granada, Dept Fis Moderna, E-18071 Granada, Spain
[5] Univ Almeria, Almeria, Spain
[6] Univ S Florida, Dept Math, Tampa, FL 33620 USA
关键词
D O I
10.1006/jath.1998.3315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the asymptotic behavior as n --> infinity of the entropy integral S-n = - integral p(n, n)(2)(x) ln p(n, n)(2)(x) w(n)(x) dx, where p(n, n) is the nth degree polynomial orthonormal with respect to a Jacobi or Laguerre weight function w(n)(x) whose parameters grow with n. For this purpose we use the weak-* convergence of the measures p(n, n)(2)(x)w(n)(x) to the Robin distribution of the support of the equilibrium measure in an external field, arising from the limit of the nth root of the sequence of weights. (C) 1999 Academic Press.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 24 条
[1]   TIGHT RIGOROUS BOUNDS TO ATOMIC INFORMATION ENTROPIES [J].
ANGULO, JC ;
DEHESA, JS .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (09) :6485-6495
[2]  
Aptekarev A.I., 1996, DOKL MATH, V53, P47
[3]   SPATIAL ENTROPY OF CENTRAL POTENTIALS AND STRONG ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS [J].
APTEKAREV, AI ;
DEHESA, JS ;
YANEZ, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4423-4428
[4]   ASYMPTOTIC-BEHAVIOR OF THE L(P)-NORMS AND THE ENTROPY FOR GENERAL ORTHOGONAL POLYNOMIALS [J].
APTEKAREV, AI ;
BUYAROV, VS ;
DEGEZA, IS ;
DEHESA, JS .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 82 (02) :373-395
[5]  
Aptekarev AI, 1996, DOKL AKAD NAUK+, V346, P439
[6]  
BAGROV VG, 1990, EXACT SOLUTIONS RELA
[7]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[8]   ON ASYMPTOTICS OF JACOBI-POLYNOMIALS [J].
CHEN, LC ;
ISMAIL, MEH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (05) :1442-1449
[9]   Strong asymptotics of Laguerre polynomials and information entropies of two-dimensional harmonic oscillator and one-dimensional Coulomb potentials [J].
Dehesa, JS ;
Yanez, RJ ;
Aptekarev, AI ;
Buyarov, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3050-3060
[10]  
Dehesa JS., 1997, METHODS APPL ANAL, V4, P91, DOI [DOI 10.4310/MAA.1997.V4.N1.A7, 10.4310/MAA.1997.v4.n1.a7, DOI 10.4310/MAA.1997.v4.n1.a7]