On the Duffin-Kemmer-Petiau equation with linear potential in the presence of a minimal length

被引:15
作者
Chargui, Yassine [1 ,2 ]
机构
[1] Qassim Univ, Coll Sci & Arts ArRass, Phys Dept, POB 53, Arross 51921, Saudi Arabia
[2] Univ Tunis El Manar, Fac Sci Tunis, Unite Rech Phys Nucl & Hautes Energies, Tunis 2092, Tunisia
关键词
Duffin-Kemmer-Petiau equation; Linear potential; Minimal length; GENERALIZED UNCERTAINTY PRINCIPLE; PARTICLES;
D O I
10.1016/j.physleta.2018.02.008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We point out an erroneous handling in the literature regarding solutions of the (1 + 1)-dimensional Duffin-Kemmer-Petiau equation with linear potentials in the context of quantum mechanics with minimal length. Furthermore, using Brau's approach, we present a perturbative treatment of the effect of the minimal length on bound-state solutions when a Lorentz-scalar linear potential is applied. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:949 / 953
页数:5
相关论文
共 37 条
[1]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[2]   Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Okamura, N ;
Rayyan, S ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 66 (02) :1
[3]   Hydrogen atom in momentum space with a minimal length [J].
Bouaziz, Djamil ;
Ferkous, Nourredine .
PHYSICAL REVIEW A, 2010, 82 (02)
[4]   Minimal length uncertainty relation and the hydrogen atom [J].
Brau, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44) :7691-7696
[5]   Generalized relativistic harmonic oscillator in minimal length quantum mechanics [J].
Castro, L. B. ;
Obispo, A. E. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (28)
[6]   Quasi-exactly-solvable confining solutions for spin-1 and spin-0 bosons in (1+1)-dimensions with a scalar linear potential [J].
Castro, Luis B. ;
de Castro, Antonio S. .
ANNALS OF PHYSICS, 2014, 351 :571-578
[7]   Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[8]   Path integral treatment of the one-dimensional Klein-Gordon oscillator with minimal length [J].
Chargui, Y. ;
Trabelsi, A. .
PHYSICA SCRIPTA, 2011, 84 (04)
[9]   Exact solution of the one-dimensional Klein-Gordon equation with scalar and vector linear potentials in the presence of a minimal length [J].
Chargui, Y. ;
Chetouani, L. ;
Trabelsi, A. .
CHINESE PHYSICS B, 2010, 19 (02)
[10]   Exact solution of the (1+1)-dimensional Dirac equation with vector and scalar linear potentials in the presence of a minimal length [J].
Chargui, Y. ;
Trabelsi, A. ;
Chetouani, L. .
PHYSICS LETTERS A, 2010, 374 (04) :531-534