Equations of motion and conserved quantities in non-Abelian discrete integrable models

被引:1
|
作者
Verbus, VA [1 ]
Protogenov, AP
机构
[1] RAS, Inst Phys Microstruct, Nizhnii Novgorod, Russia
[2] RAS, Inst Phys Appl, Nizhnii Novgorod, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1007/BF02557340
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Conserved quantities for the Hirota bilinear difference equation, which is satisfied by eigenvalues of the transfer matrix, are studied. The transfer-matrix eigenvalue combinations that are integrals of motion for discrete integrable models, which correspond to A(k-1) algebras and satisfy zero or quasi-periodic boundary conditions, are found. Discrete equations of motion for a non-Abelian generalization of the Liouville model and the discrete analogue of the Tsitseika equation are obtained.
引用
收藏
页码:420 / 430
页数:11
相关论文
共 50 条
  • [21] Lagrangian, Hamiltonian and conserved quantities for coupled integrable, dispersionless equations
    Kakuhata, H
    Konno, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (01) : 1 - 2
  • [22] On the Painlevé test for non-Abelian equations
    Ufa Stt. Aircraft Tech. University, K. Marx Street 12, 450000 Ufa, Russia
    不详
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (267-272):
  • [24] DUAL TRANSFORMATIONS FOR DISCRETE ABELIAN MODELS - SIMPLE EXAMPLE OF A DUAL TRANSFORMATION FOR A NON-ABELIAN MODEL
    DOTSENKO, VS
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1978, 75 (03): : 1083 - 1101
  • [25] FLAVOR UNIFICATION AND DISCRETE NON-ABELIAN SYMMETRIES
    KAPLAN, DB
    SCHMALTZ, M
    PHYSICAL REVIEW D, 1994, 49 (07): : 3741 - 3750
  • [26] Inflationary models with a flat potential enforced by non-Abelian discrete gauge symmetries
    Stewart, ED
    Cohn, JD
    PHYSICAL REVIEW D, 2001, 63 (08)
  • [27] Abelian and non-abelian branes in WZW models and gerbes
    Gawedzki, K
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) : 23 - 73
  • [28] Non-Abelian discrete gauge symmetries in 4d string models
    Berasaluce-Gonzalez, M.
    Camara, P. G.
    Marchesano, F.
    Regalado, D.
    Uranga, A. M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (09):
  • [29] Higgs → μτ in Abelian and non-Abelian flavor symmetry models
    Heeck, Julian
    Holthausen, Martin
    Rodejohann, Werner
    Shimizu, Yusuke
    NUCLEAR PHYSICS B, 2015, 896 : 281 - 310
  • [30] Abelian and Non-Abelian Branes in WZW Models and Gerbes
    Krzysztof Gawedzki
    Communications in Mathematical Physics, 2005, 258 : 23 - 73