A Memetic Chaotic Gravitational Search Algorithm for unconstrained global optimization problems

被引:44
作者
Garcia-Rodenas, Ricardo [1 ]
Jimenez Linares, Luis [1 ]
Alberto Lopez-Gomez, Julio [1 ]
机构
[1] Univ Castilla La Mancha, Higher Sch Comp Sci, Paseo Univ 4, Ciudad Real, Spain
关键词
Memetic algorithms; Gravitational search algorithm; Quasi-Newton methods; PARTICLE SWARM OPTIMIZATION; COMBINATORIAL OPTIMIZATION; DIFFERENTIAL EVOLUTION; NEURAL-NETWORK; FILTER DESIGN; GSA; METAHEURISTICS; CROSSOVER; INTELLIGENCE; OPERATOR;
D O I
10.1016/j.asoc.2019.03.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metaheuristic optimization algorithms address two main tasks in the process of problem solving: i) exploration (also called diversification) and ii) exploitation (also called intensification). Guaranteeing a trade-off between these operations is critical to good performance. However, although many methods have been proposed by which metaheuristics can achieve a balance between the exploration and exploitation stages, they are still worse than exact algorithms at exploitation tasks, where gradient-based mechanisms outperform metaheuristics when a local minimum is approximated. In this paper, a quasi-Newton method is introduced into a Chaotic Gravitational Search Algorithm as an exploitation method, with the purpose of improving the exploitation capabilities of this recent and promising population-based metaheuristic. The proposed approach, referred to as a Memetic Chaotic Gravitational Search Algorithm, is used to solve forty-five benchmark problems, both synthetic and real-world, to validate the method. The numerical results show that the adding of quasi-Newton search directions to the original (Chaotic) Gravitational Search Algorithm substantially improves its performance. Also, a comparison with the state-of-the-art algorithms: Particle Swarm Optimization, Genetic Algorithm, Rcr-JADE, COBIDE and RLMPSO, shows that the proposed approach is promising for certain real-world problems. (C) 2019 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:14 / 29
页数:16
相关论文
共 80 条