Many-body localization in a quasiperiodic Fibonacci chain

被引:52
作者
Mace, Nicolas [1 ]
Laflorencie, Nicolas [1 ]
Alet, Fabien [1 ]
机构
[1] Univ Toulouse, IRSAMC, Lab Phys Theor, CNRS,UPS, F-31062 Toulouse, France
关键词
2 INTERACTING PARTICLES; SPECTRUM; CRYSTALLINE; FERMIONS; SYSTEM; CHAOS;
D O I
10.21468/SciPostPhys.6.4.050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the many-body localization (MBL) properties of a chain of interacting fermions subject to a quasiperiodic potential such that the non-interacting chain is always delocalized and displays multifractality. Contrary to naive expectations, adding interactions in this systems does not enhance delocalization, and a MBL transition is observed. Due to the local properties of the quasiperiodic potential, the MBL phase presents specific features, such as additional peaks in the density distribution. We furthermore investigate the fate of multifractality in the ergodic phase for low potential values. Our analysis is based on exact numerical studies of eigenstates and dynamical properties after a quench.
引用
收藏
页数:24
相关论文
共 102 条
[51]   A SOLUBLE QUASI-CRYSTALLINE MAGNETIC MODEL - THE XY QUANTUM SPIN CHAIN [J].
LUCK, JM ;
NIEUWENHUIZEN, TM .
EUROPHYSICS LETTERS, 1986, 2 (04) :257-266
[52]   A CLASSIFICATION OF CRITICAL PHENOMENA ON QUASI-CRYSTALS AND OTHER APERIODIC STRUCTURES [J].
LUCK, JM .
EUROPHYSICS LETTERS, 1993, 24 (05) :359-364
[53]   Observation of Slow Dynamics near the Many-Body Localization Transition in One-Dimensional Quasiperiodic Systems [J].
Lueschen, Henrik P. ;
Bordia, Pranjal ;
Scherg, Sebastian ;
Alet, Fabien ;
Altman, Ehud ;
Schneider, Ulrich ;
Bloch, Immanuel .
PHYSICAL REVIEW LETTERS, 2017, 119 (26)
[54]   The ergodic side of the many-body localization transition [J].
Luitz, David J. ;
Lev, Yevgeny Bar .
ANNALEN DER PHYSIK, 2017, 529 (07)
[55]   Extended slow dynamical regime close to the many-body localization transition [J].
Luitz, David J. ;
Laflorencie, Nicolas ;
Alet, Fabien .
PHYSICAL REVIEW B, 2016, 93 (06)
[56]   Many-body localization edge in the random-field Heisenberg chain [J].
Luitz, David J. ;
Laflorencie, Nicolas ;
Alet, Fabien .
PHYSICAL REVIEW B, 2015, 91 (08)
[57]   Critical eigenstates and their properties in one- and two-dimensional quasicrystals [J].
Mace, Nicolas ;
Jagannathan, Anuradha ;
Kalugin, Pavel ;
Mosseri, Remy ;
Piechon, Frederic .
PHYSICAL REVIEW B, 2017, 96 (04)
[58]  
McKinney W., 2010, P 9 PYTHON SCI C P 9 PYTHON SCI C, P56, DOI [DOI 10.25080/MAJORA-92BF1922-00A.SCIPY, 10.25080/MAJORA-92BF1922-00A]
[60]   Dynamics of entanglement and transport in one-dimensional systems with quenched randomness [J].
Nahum, Adam ;
Ruhman, Jonathan ;
Huse, David A. .
PHYSICAL REVIEW B, 2018, 98 (03)