Many-body localization in a quasiperiodic Fibonacci chain

被引:52
作者
Mace, Nicolas [1 ]
Laflorencie, Nicolas [1 ]
Alet, Fabien [1 ]
机构
[1] Univ Toulouse, IRSAMC, Lab Phys Theor, CNRS,UPS, F-31062 Toulouse, France
关键词
2 INTERACTING PARTICLES; SPECTRUM; CRYSTALLINE; FERMIONS; SYSTEM; CHAOS;
D O I
10.21468/SciPostPhys.6.4.050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the many-body localization (MBL) properties of a chain of interacting fermions subject to a quasiperiodic potential such that the non-interacting chain is always delocalized and displays multifractality. Contrary to naive expectations, adding interactions in this systems does not enhance delocalization, and a MBL transition is observed. Due to the local properties of the quasiperiodic potential, the MBL phase presents specific features, such as additional peaks in the density distribution. We furthermore investigate the fate of multifractality in the ergodic phase for low potential values. Our analysis is based on exact numerical studies of eigenstates and dynamical properties after a quench.
引用
收藏
页数:24
相关论文
共 102 条
[1]   Recent progress in many-body localization [J].
Abanin, Dmitry A. ;
Papic, Zlatko .
ANNALEN DER PHYSIK, 2017, 529 (07)
[2]   Rare-region effects and dynamics near the many-body localization transition [J].
Agarwal, Kartiek ;
Altman, Ehud ;
Demler, Eugene ;
Gopalakrishnan, Sarang ;
Huse, David A. ;
Knap, Michael .
ANNALEN DER PHYSIK, 2017, 529 (07)
[3]   Many-body localization: An introduction and selected topics [J].
Alet, Fabien ;
Laflorencie, Nicolas .
COMPTES RENDUS PHYSIQUE, 2018, 19 (06) :498-525
[4]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[5]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[6]  
Balay S., 2018, PETSC TAO
[7]   Transport in quasiperiodic interacting systems: From superdiffusion to subdiffusion [J].
Bar Lev, Yevgeny ;
Kennes, Dante M. ;
Kloeckner, Christian ;
Reichman, David R. ;
Karrasch, Christoph .
EPL, 2017, 119 (03)
[8]   Many-body localization in system with a completely delocalized single-particle spectrum [J].
Bar Lev, Yevgeny ;
Reichman, David R. ;
Sagi, Yoav .
PHYSICAL REVIEW B, 2016, 94 (20)
[9]   Absence of Diffusion in an Interacting System of Spinless Fermions on a One-Dimensional Disordered Lattice [J].
Bar Lev, Yevgeny ;
Cohen, Guy ;
Reichman, David R. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[10]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)