Improved Current Density and Magnetization Reconstruction Through Vector Magnetic Field Measurements

被引:44
作者
Broadway, D. A. [1 ,2 ,3 ]
Lillie, S. E. [1 ,2 ]
Scholten, S. C. [1 ,2 ]
Rohner, D. [3 ]
Dontschuk, N. [1 ]
Maletinsky, P. [3 ]
Tetienne, J. -P. [1 ,2 ]
Hollenberg, L. C. L. [1 ,2 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Ctr Quantum Computat & Commun Technol, Sch Phys, Parkville, Vic 3010, Australia
[3] Univ Basel, Dept Phys, Klingelbergstr 82, CH-4056 Basel, Switzerland
来源
PHYSICAL REVIEW APPLIED | 2020年 / 14卷 / 02期
基金
澳大利亚研究理事会;
关键词
2D MATERIALS; NANOSCALE;
D O I
10.1103/PhysRevApplied.14.024076
中图分类号
O59 [应用物理学];
学科分类号
摘要
Stray magnetic fields contain significant information about the electronic and magnetic properties of condensed-matter systems. For two-dimensional (2D) systems, stray field measurements can even allow full determination of the source quantity. For instance, a 2D map of the stray magnetic field can be uniquely transformed into the 2D current density that gives rise to the field and, under some conditions, into the equivalent 2D magnetization. However, implementing these transformations typically requires truncation of the initial data and involves singularities that may introduce errors, artefacts, and amplify noise. Here we investigate the possibility of mitigating these issues through vector measurements. For each scenario (current reconstruction and magnetization reconstruction) the different possible reconstruction pathways are analyzed and their performances compared. In particular, we find that the simultaneous measurement of both in-plane components (B-x and B-y) enables near-ideal reconstruction of the current density, without singularity or truncation artefacts, which constitutes a significant improvement over reconstruction based on a single component (e.g., B-z). On the other hand, for magnetization reconstruction, a single measure-ment of the out-of-plane field (B-z) is generally the best choice, regardless of the magnetization direction. We verify these findings experimentally using nitrogen-vacancy-center magnetometry in the case of a 2D current density and a 2D magnet with perpendicular magnetization.
引用
收藏
页数:15
相关论文
共 58 条
[31]   Obtaining vector magnetic field maps from single-component measurements of geological samples [J].
Lima, Eduardo A. ;
Weiss, Benjamin P. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2009, 114
[32]   Vector magnetic field microscopy using nitrogen vacancy centers in diamond [J].
Maertz, B. J. ;
Wijnheijmer, A. P. ;
Fuchs, G. D. ;
Nowakowski, M. E. ;
Awschalom, D. D. .
APPLIED PHYSICS LETTERS, 2010, 96 (09)
[33]  
Maletinsky P, 2012, NAT NANOTECHNOL, V7, P320, DOI [10.1038/nnano.2012.50, 10.1038/NNANO.2012.50]
[34]   Direct Reconstruction of Two-Dimensional Currents in Thin Films from Magnetic-Field Measurements [J].
Meltzer, Alexander Y. ;
Levin, Eitan ;
Zeldov, Eli .
PHYSICAL REVIEW APPLIED, 2017, 8 (06)
[35]  
Nowack KC, 2013, NAT MATER, V12, P787, DOI [10.1038/nmat3682, 10.1038/NMAT3682]
[36]  
Pelliccione M, 2016, NAT NANOTECHNOL, V11, P700, DOI [10.1038/nnano.2016.68, 10.1038/NNANO.2016.68]
[37]   Magnetic field imaging with nitrogen-vacancy ensembles [J].
Pham, L. M. ;
Le Sage, D. ;
Stanwix, P. L. ;
Yeung, T. K. ;
Glenn, D. ;
Trifonov, A. ;
Cappellaro, P. ;
Hemmer, P. R. ;
Lukin, M. D. ;
Park, H. ;
Yacoby, A. ;
Walsworth, R. L. .
NEW JOURNAL OF PHYSICS, 2011, 13
[38]   (111)-oriented, single crystal diamond tips for nanoscale scanning probe imaging of out-of-plane magnetic fields [J].
Rohner, D. ;
Happacher, J. ;
Reiser, P. ;
Tschudin, M. A. ;
Tallaire, A. ;
Achard, J. ;
Shields, B. ;
Maletinsky, P. .
APPLIED PHYSICS LETTERS, 2019, 115 (19)
[39]   Magnetometry with nitrogen-vacancy defects in diamond [J].
Rondin, L. ;
Tetienne, J-P ;
Hingant, T. ;
Roch, J-F ;
Maletinsky, P. ;
Jacques, V. .
REPORTS ON PROGRESS IN PHYSICS, 2014, 77 (05)
[40]   Nanoscale magnetic field mapping with a single spin scanning probe magnetometer [J].
Rondin, L. ;
Tetienne, J. -P. ;
Spinicelli, P. ;
Dal Savio, C. ;
Karrai, K. ;
Dantelle, G. ;
Thiaville, A. ;
Rohart, S. ;
Roch, J. -F. ;
Jacques, V. .
APPLIED PHYSICS LETTERS, 2012, 100 (15)