Gauss-Newton approximation to Bayesian learning

被引:0
|
作者
Foresee, FD
Hagan, MT
机构
来源
1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4 | 1997年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes the application of Bayesian regularization to the training of feedforward neural networks. A Gauss-Newton approximation to the Hessian matrix, which can be conveniently implemented within the framework of the Levenberg-Marquardt algorithm, is used to reduce the computational overhead. The resulting algorithm is demonstrated on a simple test problem and is then applied to three practical problems. The results demonstrate that the algorithm produces net works which have excellent generalization capabilities.
引用
收藏
页码:1930 / 1935
页数:6
相关论文
共 50 条
  • [1] A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton
    Qin, Youwei
    Kavetski, Dmitri
    Kuczera, George
    WATER RESOURCES RESEARCH, 2018, 54 (11) : 9655 - 9683
  • [2] Practical Gauss-Newton Optimisation for Deep Learning
    Botev, Aleksandar
    Ritter, Hippolyt
    Barber, David
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [3] On the Gauss-Newton method
    Argyros I.K.
    Hilout S.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 537 - 550
  • [4] Gauss-Newton method
    Wang, Yong
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (04) : 415 - 420
  • [5] Gauss-Newton and Inverse Gauss-Newton Methods for Coefficient Identification in Linear Elastic Systems
    David L. Russell
    Acta Applicandae Mathematicae, 2012, 118 : 221 - 235
  • [6] Gauss-Newton and Inverse Gauss-Newton Methods for Coefficient Identification in Linear Elastic Systems
    Russell, David L.
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 221 - 235
  • [7] Efficient Calculation of the Gauss-Newton Approximation of the Hessian Matrix in Neural Networks
    Fairbank, Michael
    Alonso, Eduardo
    NEURAL COMPUTATION, 2012, 24 (03) : 607 - 610
  • [8] EXPONENTIAL APPROXIMATION VIA A CLOSED-FORM GAUSS-NEWTON METHOD
    HARMAN, RK
    FAIRMAN, FW
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1973, CT20 (04): : 361 - 369
  • [9] Gauss-Newton particle filter
    Cao, Hui
    Ohnishi, Noboru
    Takeuchi, Yoshinori
    Matsumoto, Tetsuya
    Kudo, Hiroaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (06) : 1235 - 1239
  • [10] Rethinking Gauss-Newton for learning over-parameterized models
    Arbel, Michael
    Menegaux, Romain
    Wolinski, Pierre
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,