Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz

被引:94
作者
Russell, Stephen A. O. [1 ]
Sharabi, Salah [1 ]
Tallaire, Alex [2 ]
Moran, David A. J. [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[2] Univ Paris 13, LSPM CNRS, F-93430 Villetaneuse, France
基金
英国工程与自然科学研究理事会;
关键词
Field-effect transistor (FET); homoepitaxial diamond; hydrogen terminated; RF performance; PERFORMANCE; F(T); FETS;
D O I
10.1109/LED.2012.2210020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Homoepitaxial diamond has been used to demonstrate the RF performance of 50-nm gate length hydrogen-terminated diamond field-effect transistors. An extrinsic cutoff frequency of 53 GHz is achieved which we believe to be the highest value reported for a diamond-based transistor. The generation of an RF small signal equivalent circuit is used to extract device elements to better understand variation between intrinsic and extrinsic operation. An intrinsic cutoff frequency of 90 GHz is extracted through this process, verifying the requirement to minimize access resistance to maximize the potential high-frequency performance of this technology.
引用
收藏
页码:1471 / 1473
页数:3
相关论文
共 50 条
[41]   Assessment of high-frequency performance limits of graphene field-effect transistors [J].
Jyotsna Chauhan ;
Jing Guo .
Nano Research, 2011, 4 :571-579
[42]   Diamond based field-effect transistors with SiNX and ZrO2 double dielectric layers [J].
Wang, W. ;
Fu, K. ;
Hu, C. ;
Li, F. N. ;
Liu, Z. C. ;
Li, S. Y. ;
Lin, F. ;
Fu, J. ;
Wang, J. J. ;
Wang, H. X. .
DIAMOND AND RELATED MATERIALS, 2016, 69 :237-240
[43]   Suppression of leakage current in carbon nanotube field-effect transistors [J].
Xu, Lin ;
Qiu, Chenguang ;
Peng, Lian-mao ;
Zhang, Zhiyong .
NANO RESEARCH, 2021, 14 (04) :976-981
[44]   Effect of contact resistance in organic field-effect transistors [J].
Shi, Yanjun ;
Liu, Jie ;
Hu, Yuanyuan ;
Hu, Wenping ;
Jiang, Lang .
NANO SELECT, 2021, 2 (09) :1661-1681
[45]   Hydrogen-Bonded Semiconducting Pigments for Air-Stable Field-Effect Transistors [J].
Glowacki, Eric Daniel ;
Irimia-Vladu, Mihai ;
Kaltenbrunner, Martin ;
Gasiorowski, Jacek ;
White, Matthew S. ;
Monkowius, Uwe ;
Romanazzi, Giuseppe ;
Suranna, Gian Paolo ;
Mastrorilli, Piero ;
Sekitani, Tsuyoshi ;
Bauer, Siegfried ;
Someya, Takao ;
Torsi, Luisa ;
Sariciftci, Niyazi Serdar .
ADVANCED MATERIALS, 2013, 25 (11) :1563-1569
[46]   Physics of organic ferroelectric field-effect transistors [J].
Brondijk, Jakob J. ;
Asadi, Kamal ;
Blom, Paul W. M. ;
de Leeuw, Dago M. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2012, 50 (01) :47-54
[47]   Graphene Field-Effect Transistors with Gigahertz-Frequency Power Gain on Flexible Substrates [J].
Petrone, Nicholas ;
Meric, Inanc ;
Hone, James ;
Shepard, Kenneth L. .
NANO LETTERS, 2013, 13 (01) :121-125
[48]   Assessment of High-Frequency Performance Limit of Black Phosphorus Field-Effect Transistors [J].
Yin, Demin ;
AlMutairi, AbdulAziz ;
Yoon, Youngki .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (07) :2984-2991
[49]   Organic field-effect transistors for biosensing applications [J].
Goetz, S. M. ;
Erlen, C. M. ;
Grothe, H. ;
Wolf, B. ;
Lugli, P. ;
Scarpa, G. .
ORGANIC ELECTRONICS, 2009, 10 (04) :573-580
[50]   Tuning the Photoresponse in Organic Field-Effect Transistors [J].
El Gemayel, Mirella ;
Treier, Matthias ;
Musumeci, Chiara ;
Li, Chen ;
Muellen, Klaus ;
Samori, Paolo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :2429-2433