Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz

被引:94
作者
Russell, Stephen A. O. [1 ]
Sharabi, Salah [1 ]
Tallaire, Alex [2 ]
Moran, David A. J. [1 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8LT, Lanark, Scotland
[2] Univ Paris 13, LSPM CNRS, F-93430 Villetaneuse, France
基金
英国工程与自然科学研究理事会;
关键词
Field-effect transistor (FET); homoepitaxial diamond; hydrogen terminated; RF performance; PERFORMANCE; F(T); FETS;
D O I
10.1109/LED.2012.2210020
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Homoepitaxial diamond has been used to demonstrate the RF performance of 50-nm gate length hydrogen-terminated diamond field-effect transistors. An extrinsic cutoff frequency of 53 GHz is achieved which we believe to be the highest value reported for a diamond-based transistor. The generation of an RF small signal equivalent circuit is used to extract device elements to better understand variation between intrinsic and extrinsic operation. An intrinsic cutoff frequency of 90 GHz is extracted through this process, verifying the requirement to minimize access resistance to maximize the potential high-frequency performance of this technology.
引用
收藏
页码:1471 / 1473
页数:3
相关论文
共 50 条
[31]   A Parameter Extraction Methodology for Graphene Field-Effect Transistors [J].
Jeppson, Kjell .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (03) :1393-1400
[32]   Stability Considerations for Silicon Carbide Field-Effect Transistors [J].
Lemmon, Andrew ;
Mazzola, Michael ;
Gafford, James ;
Parker, Chris .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (10) :4453-4459
[33]   Tunnel Field-Effect Transistors: State-of-the-Art [J].
Lu, Hao ;
Seabaugh, Alan .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2014, 2 (04) :44-49
[34]   ZnO Nanowire Field-Effect Transistors [J].
Chang, Pai-Chun ;
Lu, Jia Grace .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) :2977-2987
[35]   TUNNEL FIELD-EFFECT TRANSISTORS - UPDATE [J].
Seabaugh, Alan ;
Lu, Hao .
2014 12TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2014,
[36]   Black phosphorus field-effect transistors [J].
Li, Likai ;
Yu, Yijun ;
Ye, Guo Jun ;
Ge, Qingqin ;
Ou, Xuedong ;
Wu, Hua ;
Feng, Donglai ;
Chen, Xian Hui ;
Zhang, Yuanbo .
NATURE NANOTECHNOLOGY, 2014, 9 (05) :372-377
[37]   Hydrogen-Bonded Conjugated Materials and Their Application in Organic Field-Effect Transistors [J].
Shi, Xin ;
Bao, Weiwei .
FRONTIERS IN CHEMISTRY, 2021, 9
[38]   Enhanced Stability of Black Phosphorus Field-Effect Transistors via Hydrogen Treatment [J].
Wan, Bensong ;
Zhou, Qionghua ;
Zhang, Junying ;
Wang, Yue ;
Yang, Bingchao ;
Lv, Weiming ;
Zhang, Baoshun ;
Zeng, Zhongming ;
Chen, Qian ;
Wang, Jinlan ;
Wang, Wenhong ;
Wen, Fusheng ;
Xiang, Jianyong ;
Xu, Bo ;
Zhao, Zhisheng ;
Tian, Yongjun ;
Liu, Zhongyuan .
ADVANCED ELECTRONIC MATERIALS, 2018, 4 (02)
[39]   High-Frequency Noise Characterization and Modeling of Graphene Field-Effect Transistors [J].
Deng, Marina ;
Fadil, Dalal ;
Wei, Wei ;
Pallecchi, Emiliano ;
Happy, Henri ;
Dambrine, Gilles ;
De Matos, Magali ;
Zimmer, Thomas ;
Fregonese, Sebastien .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (06) :2116-2123
[40]   Assessment of high-frequency performance limits of graphene field-effect transistors [J].
Chauhan, Jyotsna ;
Guo, Jing .
NANO RESEARCH, 2011, 4 (06) :571-579