HIV-1 CRF01_AE coreceptor usage prediction using kernel methods based logistic model trees

被引:36
作者
Shoombuatong, Watshara [1 ,2 ]
Hongjaisee, Sayamon [3 ]
Barin, Francis [4 ]
Chaijaruwanich, Jeerayut [1 ,2 ]
Samleerat, Tanawan [3 ]
机构
[1] Chiang Mai Univ, Dept Comp Sci, Chiang Mai 50200, Thailand
[2] Chiang Mai Univ, Bioinformat Res Lab, Chiang Mai 50200, Thailand
[3] Chiang Mai Univ, Fac Associated Med Sci, Dept Med Technol, Chiang Mai 50200, Thailand
[4] Univ Tours, INSERM, U966, F-37032 Tours, France
关键词
HIV-1; coreceptor; CRF01_AE; V3 amino acid sequences; Support vector machine; Logistic model tree; Feature selection; Machine learning; HUMAN-IMMUNODEFICIENCY-VIRUS; SYNCYTIUM-INDUCING PHENOTYPE; V3; LOOP; TYPE-1; TROPISM; CLASSIFICATION; ENTRY; ENV;
D O I
10.1016/j.compbiomed.2012.06.011
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The determination of HIV-1 coreceptor usage plays a major role in HIV treatment. Since Maraviroc has been used in a treatment for patients those exclusively harbor R5-tropic strains, the efficient performance of classifying HIV-1 coreceptor usage can help choose the most advantaged HIV treatment. In general, HIV-1 variants are classified as R5-tropic and X4-tropic or dual/mixed tropic based on their coreceptor usages. The classification of the coreceptor usage has been developed by using the various computational methods or genotypic algorithms based on V3 amino acid sequences. Most genotypic tools have been designed based on a data set of the HIV-1 subtype B that seemed to be reliable only for this subtype. However, the performance of these tools decreases in non-B subtypes. In this study, the support vector machine (SVM) method has been used to classify the HIV-1 coreceptor. To develop an efficient SVM classifier, we present a feature selector using the logistic model tree (LMT) method to select the most relevant positions from the V3 amino acid sequences. Our approach achieves as high as 97.8% accuracy, 97.7% specificity, and 97.9% sensitivity measured by ten-fold cross-validation on 273 sequences. (C) 2012 Published by Elsevier Ltd.
引用
收藏
页码:885 / 889
页数:5
相关论文
共 29 条
[1]   A new classification for HIV-1 [J].
Berger, EA ;
Doms, RW ;
Fenyö, EM ;
Korber, BTM ;
Littman, DR ;
Moore, JP ;
Sattentau, QJ ;
Schuitemaker, H ;
Sodroski, J ;
Weiss, RA .
NATURE, 1998, 391 (6664) :240-240
[2]  
Christianini N., 2000, INTRO SUPPORT VECTOR, P189
[3]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[4]   Population-based sequencing of the V3 region of env for predicting the coreceptor usage of human immunodeficiency virus type 1 quasispecies [J].
Delobel, Pierre ;
Nugeyre, Marie-Therese ;
Cazabat, Michelle ;
Pasquier, Christophe ;
Marchou, Bruno ;
Massip, Patrice ;
Barre-Sinoussi, Francoise ;
Israel, Nicole ;
Izopet, Jacques .
JOURNAL OF CLINICAL MICROBIOLOGY, 2007, 45 (05) :1572-1580
[5]   HIV-1 Entry Cofactor: Functional cDNA Cloing of a Seven-Transmembrane, G protein-Coupled Receptor [J].
Feng, Yu ;
Broder, Christopher C. ;
Kennedy, Paul E. ;
Berger, Edward A. .
JOURNAL OF IMMUNOLOGY, 2011, 186 (11) :872-877
[6]   PHENOTYPE-ASSOCIATED SEQUENCE VARIATION IN THE 3RD VARIABLE DOMAIN OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 GP120 MOLECULE [J].
FOUCHIER, RAM ;
GROENINK, M ;
KOOTSTRA, NA ;
TERSMETTE, M ;
HUISMAN, HG ;
MIEDEMA, F ;
SCHUITEMAKER, H .
JOURNAL OF VIROLOGY, 1992, 66 (05) :3183-3187
[7]  
Friedman J., 1998, ANN STAT, V28, P1
[8]   Evaluation of eight different bioinformatics tools to predict viral tropism in different human immunodeficiency virus type 1 subtypes [J].
Garrido, Carolina ;
Roulet, Vanessa ;
Chueca, Natalia ;
Poveda, Eva ;
Aguilera, Antonio ;
Skrabal, Katharina ;
Zahonero, Natalia ;
Carlos, Silvia ;
Garcia, Federico ;
Louis Faudon, Jean ;
Soriano, Vincent ;
de Mendoza, Carmen .
JOURNAL OF CLINICAL MICROBIOLOGY, 2008, 46 (03) :887-891
[9]  
Gartner T., 2003, SIGKDD EXPLORATIONS
[10]  
Han J., 2012, Data Mining, P393, DOI [DOI 10.1016/B978-0-12-381479-1.00009-5, 10.1016/B978-0-12-381479-1.00009-5]