Glass ceramic foam with high strength was developed using municipal waste incineration bottom ash, fly ash, pickling sludge and secondary aluminum ash as raw materials without foaming agent. The effect of the secondary aluminum ash content and alkalinity on the pore morphology, porosity, water absorption, compression strength and bulk density of glass ceramic foams has been evaluated. The results showed that the increase of secondary aluminum ash content is beneficial to gas generation, but it will reduce the formation of liquid phase, resulting in the variation of pore morphology. In the process of alkalinity adjustment, the degree of polymerization of glass decreased first and then increased, which is similar to the change of max pore size, providing guidance for quantitative analysis of pore formation. The optimized sample reached porosities up to 63.02%, bulk density of similar to 1.42 g/cm(3), and excellent compressive strength similar to 41.93 MPa. The analysis of self-foaming mechanism proved that secondary aluminum ash can be used as a self-foaming waste results from the oxidation reaction of AlN. In this work, a clean and sustainable utilization method has been proposed for recycling multiple solid wastes by preparing glass ceramic foams with a potential application for construction insulation materials with load-bearing. Moreover, an innovative exploration of secondary aluminum ash as the self-foaming waste in high temperature environmental was proposed. (C) 2020 Elsevier Ltd. All rights reserved.