Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case

被引:22
作者
Edmunds, D. E.
Lang, J.
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Cardiff Univ, Sch Math, Cardiff CF24 4YH, Wales
关键词
approximation numbers; Kolmogorov widths; Hardy-type operators;
D O I
10.1002/mana.200510389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I = [a, b] subset of R, let 1 < q <= p < infinity, let u and v be positive functions with u is an element of L-p' (I) and v is an element of L-q (I), and let T : L-p (I) -> L-q (I) be the Hardy-type operator given by (Tf)(x) = v(x) integral(x)(a) f (t)u(t) dt, x is an element of I. Given any n is an element of N, let s(n) stand for either the n-th approximation number of T or the n-th Kolmogorov width of T. We show that lim(n ->infinity) ns(n) = C-pq (integral(I) (uv)(1/r) dt)(r), r = 1/p' + 1/q, where c(pq) is an explicit constant depending only on p and q. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:727 / 742
页数:16
相关论文
共 21 条
[1]   SPECTRA OF NONLINEAR DIFFERENTIAL-EQUATIONS AND WIDTHS OF SOBOLEV CLASSES [J].
BUSLAEV, AP ;
TIKHOMIROV, VM .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (02) :427-446
[2]  
Drabek P., 1999, Differential Integral Equations, V12, P723
[3]  
Edmunds D. E., 1996, FUNCTION SPACES ENTR
[4]  
Edmunds D.E., 2004, HARDY OPERATORS FUNC
[5]  
Edmunds DE, 1997, STUD MATH, V124, P59
[6]   Behaviour of the approximation numbers of a Sobolev embedding in the one-dimensional case [J].
Edmunds, DE ;
Lang, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 206 (01) :149-166
[7]   Remainder estimates for the approximation numbers of weighted hardy operators acting on L2 [J].
Edmunds, DE ;
Kerman, R ;
Lang, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :225-243
[8]  
EDMUNDS DE, SPECTRAL THEORY DIFF, P87
[9]  
EDMUNDS DE, 2005, 051 OH STAT MATH RES
[10]  
Evans WD, 1998, STUD MATH, V130, P171