Slow crack growth and hydrothermal aging stability of an alumina-toughened zirconia composite made from La2O3-doped 2Y-TZP

被引:42
作者
Zhang, Fei [1 ,2 ,3 ]
Chevalier, Jerome [4 ]
Olagnon, Christian [4 ]
Van Meerbeek, Bart [2 ,3 ]
Vleugels, Jef [1 ]
机构
[1] Katholieke Univ Leuven, Dept Mat Engn, Kasteelpk Arenberg 44, Leuven, Belgium
[2] Katholieke Univ Leuven, KU Leuven BIOMAT, Dept Oral Hlth Sci, Leuven, Belgium
[3] Univ Hosp Leuven, Dent, Leuven, Belgium
[4] INSA Lyon, Inst Natl Sci Appl, UMR CNRS 5510 MATEIS, Lyon, France
关键词
Zirconia; Alumina toughed zirconia (ATZ); Hydrothermal aging resistance; Slow crack growth (SCG); LOW-TEMPERATURE DEGRADATION; MECHANICAL-PROPERTIES; Y-TZP; TETRAGONAL ZIRCONIA; FRACTURE-TOUGHNESS; CERAMICS; BEHAVIOR; MICROSTRUCTURE; TRANSFORMATION; RESISTANCE;
D O I
10.1016/j.jeurceramsoc.2016.11.003
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A very tough zirconia matrix is interesting to fabricate alumina-toughened zirconia (ATZ) and composites generally processed from 3Y-TZP do not exhibit very high toughness. The strategy of lowering the yttria content to increase toughness however is normally associated with an increased hydrothermal aging susceptibility. In this work, a 0.4 mol% La2O3 doped 2Y-TZP matrix was investigated to realize a 20 wt.% alumina toughened zirconia composite with a substantially high aging resistance. The higher transformation toughening in the composite shifted the V-K-1 towards higher K-1 values, while preserving the slope of the curve, resulting in a threshold K-10 of 4.0 MPa m(1/2) and fracture toughness (K-IC) of 7.1 MPa m(1/2). These composites can offer a better compromise between aging and crack resistance than traditional 3Y-TZPs and plain ATZ composites without La2O3 doping. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1865 / 1871
页数:7
相关论文
共 41 条
[1]  
[Anonymous], 2016, 13356 ISO
[2]   Introduction to a tough, strong and stable Ce-TZP/MgAl2O4 composite for biomedical applications [J].
Apel, E. ;
Ritzberger, C. ;
Courtois, N. ;
Reveron, H. ;
Chevalier, J. ;
Schweiger, M. ;
Rothbrust, F. ;
Rheinberger, V. M. ;
Hoeland, W. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (11) :2697-2703
[3]   ZrO2-Al2O3 composites with tailored toughness [J].
Basu, B ;
Vleugels, J ;
Van Der Biest, O .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 372 (1-2) :278-284
[4]   Transformation behaviour of tetragonal zirconia: role of dopant content and distribution [J].
Basu, B ;
Vleugels, J ;
Van Der Biest, O .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 366 (02) :338-347
[5]   Tribological behaviour of an alumina toughened zirconia ceramic for an application in joint prostheses [J].
Begand, S ;
Oberbach, T ;
Glien, W .
BIOCERAMICS 18, PTS 1 AND 2, 2006, 309-311 :1261-1264
[6]   Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical applications [J].
Benzaid, Rajaa ;
Chevalier, Jerome ;
Saddaoui, Malika ;
Fantozzi, Gilbert ;
Nawa, Masahiro ;
Diaz, Luis Antonio ;
Torrecillas, Ramon .
BIOMATERIALS, 2008, 29 (27) :3636-3641
[7]   Crack propagation and fatigue in zirconia-based composites [J].
Chevalier, J ;
Olagnon, C ;
Fantozzi, G .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 1999, 30 (04) :525-530
[8]   What future for zirconia as a biomaterial? [J].
Chevalier, J .
BIOMATERIALS, 2006, 27 (04) :535-543
[9]  
Chevalier J, 1999, J AM CERAM SOC, V82, P2150
[10]   Double torsion testing a 3Y-TZP ceramic [J].
Chevalier, J ;
Saadaoui, V ;
Olagnon, C ;
Fantozzi, G .
CERAMICS INTERNATIONAL, 1996, 22 (02) :171-177