Mechanical Properties of Multifunctional TiF4 from First-Principles Calculations

被引:4
|
作者
Jebasty, Rethinaraj Mariyal [1 ]
Vidya, Ravindran [1 ]
机构
[1] Anna Univ, Dept Med Phys, Sardar Patel Rd, Chennai 600025, Tamil Nadu, India
关键词
titanium tetrafluoride; density functional theory; columnar structure; elastic constants; anisotropy; dental fillings; TITANIUM TETRAFLUORIDE; ENAMEL DISSOLUTION; ELASTIC PROPERTIES; FLUORIDE; MGH2; DENTIN; EROSION; ALLOYS;
D O I
10.1021/acsbiomaterials.8b01391
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Titanium tetrafluoride (TiF4) plays a crucial role in prerestorative dentistry, the synthesis of metal fluorides and titanium silicate thin films, enhancing the photocatalytic activity of TiO2, and hydrogen storage applications. Though TiF4 is touted for superior catalytic activity in deflating the decomposition temperature of metal hydrides, its fundamental properties have not been studied yet. Compressibility is a vital parameter during mechanical milling and hydrogen cycling processes from solid metal hydrides to sustain its stability. Even though many high-pressure studies are available on metal hydrides, a similar study on the TiF4 additive has not yet been conducted by either theoretical or experimental methods. In an effort to identify the compressibility of the TiF4 catalyst, we have performed state-of-the-art density-functional theory-based calculations for three chemical states of TiFx (x = 4, 3, and 2). The mechanical strength of a material is derived from interatomic interactions, which in turn are influenced by the microstructure and bonding. The results highlight the superior structural, electronic, mechanical, and optical properties of orthorhombic TiF4, which has octahedral columns similar to those of bone tissue material (hydroxyapatite). This article highlights the stable iono-covalent F-Ti-F bonding of the +4 state of titanium fluoride. Materials with Young's moduli close to that of bone (20-30 GPa) have been intensely searched for bone implants. TiF4 can be used for this purpose because its average Young's modulus is 47 GPa. Our detailed analysis of charge density in TiF4 sheds light on its unique bonding characteristics, which result in its extraordinary mechanical properties, making TiF4 a multifunctional material not only for dental fillings but also for orthopedic and catalytic applications.
引用
收藏
页码:2001 / 2012
页数:23
相关论文
共 50 条
  • [41] Elastic constants and mechanical properties of PEDOT from first principles calculations
    Agbaoye, R. O.
    Adebambo, P. O.
    Akinlami, J. O.
    Afolabi, T. A.
    Karazhanov, Smagul Zh.
    Ceresoli, Davide
    Adebayo, G. A.
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 139 : 234 - 242
  • [42] Reliability evaluation of thermophysical properties from first-principles calculations
    Palumbo, Mauro
    Fries, Suzana G.
    Dal Corso, Andrea
    Koermann, Fritz
    Hickel, Tilmann
    Neugebauer, Joerg
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (33)
  • [43] Elastic and thermodynamic properties of TiC from first-principles calculations
    YanHong Li
    WanFeng Wang
    Bo Zhu
    Ming Xu
    Jun Zhu
    YanJun Hao
    WeiHu Li
    XiaoJiang Long
    Science China Physics, Mechanics and Astronomy, 2011, 54 : 2196 - 2201
  • [44] Pressure effects on structural and elastic properties of BeO from first-principles calculations
    Luo, Fen
    Guo, Zhi-Cheng
    Zhang, Xiu-Lu
    Yuan, Chang-Ying
    Liu, Cheng-An
    Cai, Ling-Cang
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (01): : 212 - 218
  • [45] Thermodynamics and elastic properties of Ta from first-principles calculations
    李强
    黄多辉
    曹启龙
    王藩侯
    蔡灵仓
    张修路
    经福谦
    Chinese Physics B, 2012, 21 (12) : 412 - 419
  • [46] Elastic properties of InGaN and InAlN from first-principles calculations
    Lepkowski, S. P.
    Gorczyca, I.
    PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 83 - 84
  • [47] First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure
    Wang, Z. P.
    Fang, Q. H.
    Li, J.
    Liu, B.
    SUPERLATTICES AND MICROSTRUCTURES, 2018, 116 : 141 - 150
  • [48] Insight into the electronic and mechanical properties of novel TMCrSi ternary silicides from first-principles calculations
    Pan, Y.
    Guan, W. M.
    Li, Y. Q.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (23) : 15863 - 15870
  • [49] Elastic and thermodynamic properties of TiC from first-principles calculations
    Li YanHong
    Wang WanFeng
    Zhu Bo
    Xu Ming
    Zhu Jun
    Hao YanJun
    Li WeiHu
    Long XiaoJiang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (12) : 2196 - 2201
  • [50] Elastic and thermodynamic properties of TiC from first-principles calculations
    LI YanHong 1
    2 Institute of Atomic and Molecular Physics
    Science China(Physics,Mechanics & Astronomy), 2011, (12) : 2196 - 2201