Endpoint Estimates for Generalized Commutators of Hardy Operators on H1 Space

被引:3
作者
Yu, Xiao [1 ,2 ]
Lu, Shanzhen [3 ]
机构
[1] Shangrao Normal Univ, Dept Math, Shangrao City 334001, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
来源
JOURNAL OF FUNCTION SPACES AND APPLICATIONS | 2013年
基金
中国国家自然科学基金;
关键词
THEOREM;
D O I
10.1155/2013/410305
中图分类号
学科分类号
摘要
We study the H-1-boundedness of the generalized commutators of Hardy operator with a homogeneous kernel as follows: H-Omega,Lambda,beta(m) f(x) = (1/vertical bar x vertical bar(n-beta))integral (vertical bar y vertical bar vertical bar x vertical bar) (Omega(x - y)/vertical bar x - y vertical bar R-m-1(m) (A; x,y) f(y)dy, where R-m (A; x, y) = A(x) - Sigma(vertical bar alpha vertical bar<m) (1/alpha!D-alpha A(y) (x - y)(alpha) with m is an element of Z(+), 0 <= beta < n and Omega is an element of Lip(1)(Sn-1). We prove that, when m >= 1, H-Omega,Lambda,beta(m) is not bounded from H-1 to Ln/(n-beta) unless H-Omega,Lambda,beta(m) 0. Finally, we prove that H-Omega,Lambda,beta(m) is bounded from H-1 to L-n/(n-beta),L-infinity with m >= 1.
引用
收藏
页数:11
相关论文
共 21 条
[1]  
Bajsanski B, 1967, P S PURE MATH, V10, P1
[2]   Best constants for certain multilinear integral operators [J].
Benyi, Arpad ;
Oh, Choonghong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
[3]  
Chen W., 2001, ADV MATH, V30, P63
[4]   BEST CONSTANTS FOR 2 NONCONVOLUTION INEQUALITIES [J].
CHRIST, M ;
GRAFAKOS, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (06) :1687-1693
[5]   A BMO ESTIMATE FOR MULTILINEAR SINGULAR-INTEGRALS [J].
COHEN, J ;
GOSSELIN, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1986, 30 (03) :445-464
[6]   A SHARP ESTIMATE FOR A MULTILINEAR SINGULAR INTEGRAL IN RN [J].
COHEN, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :693-702
[7]   Commutators of n-dimensional rough Hardy operators [J].
Fu ZunWei ;
Lu ShanZhen ;
Zhao FaYou .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) :95-104
[8]  
Garcia-Cuerva J, 1985, WEIGHTED NORM INEQUA, V116
[9]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[10]   CBMO estimates for multilinear Hardy operators [J].
Lu, Shan Zhen ;
Zhao, Fa You .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (07) :1245-1254