Tunable ultrasensitive terahertz sensing based on surface plasmon polariton of doped monolayer graphene

被引:13
作者
Huang, Yi [1 ]
Zhong, Shuncong [1 ,2 ]
Yao, Haizi [1 ]
Cui, Daxiang [3 ]
机构
[1] Fuzhou Univ, Sch Mech Engn & Automat, Lab Opt Terahertz & Nondestruct Testing, Fuzhou 350108, Peoples R China
[2] Fujian Key Lab Med Instrument & Pharmaceut Techno, Fuzhou 350108, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Bionano Sci & Engn, Shanghai 200030, Peoples R China
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2017年 / 214卷 / 01期
基金
中国国家自然科学基金;
关键词
Fermi level energy; graphene; surface plasmon polariton; terahertz radiation;
D O I
10.1002/pssa.201600550
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We reported the surface plasmon resonance (SPR) on doped monolayer graphene (MLG) for terahertz (THz) sensing of refractive index of testing samples using a prism-coupling attenuated total reflection configuration. The theoretical detection range and sensitivity of the THz plasmonic sensor were investigated. The sensor performance in terms of variation of detection accuracy with different refractive index was explored. It was demonstrated that the Fermi level energy of MLG and also the gap distance between the prism base and the MLG had great effects on the performance of THz sensing. The gap distance not only caused the coupling resonance frequency shift in the reflection spectrum, but also affected the full width at half maxima (FWHM) of the SPR curve. The incident angle of THz radiation was also the key impact factor of the detection accuracy of the sensor. The effective SPR frequency could be tuned by controlling the incident angle or the Fermi level energy. The results revealed the maximum sensitivity of the THz plasmonic sensor up to 6.65THzRIU(-1) with a figure of merit (FOM) of 1187RIU(-1) for Fermi level energy ranges from 0.4 to 1.2eV, making the sensor potential for ultra-sensitive SPR sensing in the terahertz regime.
引用
收藏
页数:6
相关论文
共 43 条
[1]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Controlling inelastic light scattering quantum pathways in graphene [J].
Chen, Chi-Fan ;
Park, Cheol-Hwan ;
Boudouris, Bryan W. ;
Horng, Jason ;
Geng, Baisong ;
Girit, Caglar ;
Zettl, Alex ;
Crommie, Michael F. ;
Segalman, Rachel A. ;
Louie, Steven G. ;
Wang, Feng .
NATURE, 2011, 471 (7340) :617-620
[4]   Controlling metamaterial resonances via dielectric and aspect ratio effects [J].
Chiam, Sher-Yi ;
Singh, Ranjan ;
Zhang, Weili ;
Bettiol, Andrew A. .
APPLIED PHYSICS LETTERS, 2010, 97 (19)
[5]  
Cong LQ, 2015, Appl Phys Lett, V106, P3
[6]   Controlling Electron-Phonon Interactions in Graphene at Ultrahigh Carrier Densities [J].
Efetov, Dmitri K. ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[7]   Synthetic Gene Networks That Count [J].
Friedland, Ari E. ;
Lu, Timothy K. ;
Wang, Xiao ;
Shi, David ;
Church, George ;
Collins, James J. .
SCIENCE, 2009, 324 (5931) :1199-1202
[8]  
Gan C. H., 2012, APPL PHYS LETT, V11, P101
[9]   Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies [J].
Gan, Choon How ;
Chu, Hong Son ;
Li, Er Ping .
PHYSICAL REVIEW B, 2012, 85 (12)
[10]  
Garcia-Vidal F. J., 2005, J OPT A-PURE APPL OP, V7, P2