Segmentation of Breast Masses in Digital Mammography Based on U-Net Deep Convolutional Neural Networks

被引:6
作者
Ruchay, A. N. [1 ,3 ]
Kober, V. I. [1 ,2 ,4 ]
Dorofeev, K. A. [1 ]
Karnaukhov, V. N. [2 ]
Mozerov, M. G. [2 ]
机构
[1] Chelyabinsk State Univ, Chelyabinsk 454001, Russia
[2] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Moscow 127051, Russia
[3] South Ural State Univ, Natl Res Univ, Chelyabinsk 454080, Russia
[4] Ctr Sci Res & Higher Educ, Ensenada 22860, Mexico
基金
俄罗斯科学基金会;
关键词
segmentation; digital mammography; U-Net deep convolutional neural network; data augmentation;
D O I
10.1134/S106422692212018X
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a new algorithm for segmentation of breast masses in digital mammography based on U-Net deep convolutional neural networks. All raw mammogram images are preprocessed to improve segmentation reliability. Deep learning was carried out using additional methods of data augmentation and fine tuning of the neural network. The performance of the proposed algorithm for segmentation of breast masses using the known CBIS-DDSM database is discussed.
引用
收藏
页码:1531 / 1541
页数:11
相关论文
共 22 条
[1]   Images data practices for Semantic Segmentation of Breast Cancer using Deep Neural Network [J].
Ahmed, Luqman ;
Iqbal, Muhammad Munwar ;
Aldabbas, Hamza ;
Khalid, Shehzad ;
Saleem, Yasir ;
Saeed, Saqib .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 14 (11) :15227-15243
[2]  
[Anonymous], 2022, BIOMED RES INT, V2022
[3]   A Novel Multi-Scale Adversarial Networks for Precise Segmentation of X-Ray Breast Mass [J].
Chen, Juan ;
Chen, Liangyong ;
Wang, Shengsheng ;
Chen, Peng .
IEEE ACCESS, 2020, 8 :103772-103781
[4]   Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing [J].
Chlebus, Grzegorz ;
Schenk, Andrea ;
Moltz, Jan Hendrik ;
van Ginneken, Bram ;
Hahn, Horst Karl ;
Meine, Hans .
SCIENTIFIC REPORTS, 2018, 8
[5]   Recognition of Breast Abnormalities Using Phase Features [J].
Diaz-Escobar, J. ;
Kober, V. ;
Karnaukhov, V. ;
Mozerov, M. .
JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2020, 65 (12) :1476-1483
[6]   A novel intuitionistic fuzzy soft set entrenched mammogram segmentation under Multigranulation approximation for breast cancer detection in early stages [J].
Ghosh, Swarup Kr ;
Mitra, Anirban ;
Ghosh, Anupam .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 169
[7]   Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation [J].
Hai, Jinjin ;
Qiao, Kai ;
Chen, Jian ;
Tan, Hongna ;
Xu, Jingbo ;
Zeng, Lei ;
Shi, Dapeng ;
Yan, Bin .
JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019
[8]   Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network [J].
Kumar Singh, Vivek ;
Rashwan, Hatem A. ;
Romani, Santiago ;
Akram, Farhan ;
Pandey, Nidhi ;
Kamal Sarker, Md Mostafa ;
Saleh, Adel ;
Arenas, Meritxell ;
Arquez, Miguel ;
Puig, Domenec ;
Torrents-Barrena, Jordina .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 139
[9]   Automatic computer-aided diagnosis system for mass detection and classification in mammography [J].
Lbachir, Ilhame Ait ;
Daoudi, Imane ;
Tallal, Saadia .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (06) :9493-9525
[10]   A curated mammography data set for use in computer-aided detection and diagnosis research [J].
Lee, Rebecca Sawyer ;
Gimenez, Francisco ;
Hoogi, Assaf ;
Miyake, Kanae Kawai ;
Gorovoy, Mia ;
Rubin, Daniel L. .
SCIENTIFIC DATA, 2017, 4