CARBON-NANOTUBE GEOMETRIES AS OPTIMAL CONFIGURATIONS

被引:8
作者
Mainini, E. [1 ]
Murakawa, H. [2 ]
Piovano, P. [3 ]
Stefanelli, U. [3 ,4 ]
机构
[1] Univ Genoa, Dipartimento Ingn Meccan Energet Gest & Trasporti, Via Opera Pia 15, I-16145 Genoa, Italy
[2] Kyushu Univ, Fac Math, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
[3] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[4] CNR, Ist Matemat Appl & Tecnol Informat E Magenes, V Ferrata 1, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
carbon nanotubes; configurational energy; stability; ELECTRONIC-PROPERTIES; CRYSTALLINE SOLIDS; YOUNGS MODULUS; STABILITY; ENERGY; CONTINUUM; PROGRAM; C-60;
D O I
10.1137/16M1087862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The fine geometry of carbon nanotubes is investigated from the viewpoint of molecular mechanics. Actual nanotube configurations are characterized as locally minimizers of a given configurational energy, including both two- and three-body contributions. By focusing on so-called zigzag and armchair topologies, we prove that the configurational energy is strictly minimized within specific, one-parameter families of periodic configurations. Such optimal configurations are checked to be stable with respect to a large class of small nonperiodic perturbations and do not coincide with classical rolled-up nor polyhedral geometries.
引用
收藏
页码:1448 / 1471
页数:24
相关论文
共 47 条
[11]   On the Crystallization of 2D Hexagonal Lattices [J].
E, Weinan ;
Li, Dong .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 286 (03) :1099-1140
[12]   Atomic to Continuum Passage for Nanotubes: A Discrete Saint-Venant Principle and Error Estimates [J].
El Kass, D. ;
Monneau, R. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (01) :25-128
[13]   Stability of crystalline solids - I: Continuum and atomic lattice considerations [J].
Elliott, RS ;
Triantafyllidis, N ;
Shaw, JA .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (01) :161-192
[14]   Stability of crystalline solids - II: Application to temperature-induced martensitic phase transformations in a bi-atomic crystal [J].
Elliott, RS ;
Shaw, JA ;
Triantafyllidis, N .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (01) :193-232
[15]   Crystallization for a Brenner-like Potential [J].
Farmer, Brittan ;
Esedoglu, Selim ;
Smereka, Peter .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (03) :1029-1061
[16]   Characterization of Optimal Carbon Nanotubes Under Stretching and Validation of the Cauchy-Born Rule [J].
Friedrich, Manuel ;
Mainini, Edoardo ;
Piovano, Paolo ;
Stefanelli, Ulisse .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (01) :465-517
[17]   THE GEOMETRY OF C60: A RIGOROUS APPROACH VIA MOLECULAR MECHANICS [J].
Friedrich, Manuel ;
Piovano, Paolo ;
Stefanelli, Ulisse .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2016, 76 (05) :2009-2029
[18]  
HARRIS P. J. F., 2009, CARBON NANOTUBE SCIE
[19]   SINGLE-SHELL CARBON NANOTUBES OF 1-NM DIAMETER [J].
IIJIMA, S ;
ICHIHASHI, T .
NATURE, 1993, 363 (6430) :603-605
[20]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58