On the stability of an n-dimensional quadratic and additive functional equation

被引:0
|
作者
Jun, KW [1 ]
Kim, HM [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2006年 / 9卷 / 01期
关键词
Hyers-Ulam stability; quadratic function;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the generalized Hyers-Ulam stability problem of a quadratic and additive type functional equation f(Sigma(i=1)(n) x(i)) + (n - 2) Sigma(i=1)(n) f(x(i)) = Sigma(1 <= i<j <= n) f(x(i) x(j)), (n > 2) for the even or odd case in the it variables.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 50 条
  • [1] On an n-dimensional mixed type additive and quadratic functional equation
    Lee, Yang-Hi
    Jung, Soon-Mo
    Rassias, Michael Th.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 228 : 13 - 16
  • [2] An n-dimensional mixed-type additive and quadratic functional equation and its stability
    Towanlong, Wanchitra
    Nakmahachalasint, Paisan
    SCIENCEASIA, 2009, 35 (04): : 381 - 385
  • [3] Solution and Fuzzy Stability of n-Dimensional Quadratic Functional Equation
    Indira, K.
    Agilan, P.
    Suresh, M.
    Balamurugan, Manivannan
    Karthikeyan, S.
    Sakthi, R.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [4] ON THE STABILITY OF AN n-DIMENSIONAL FUNCTIONAL EQUATION ORIGINATING FROM QUADRATIC FORMS
    Najati, Abbas
    Park, Choonkil
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (07): : 1609 - 1624
  • [5] On the Hyers-Ulam-Rassias stability of an n-dimensional pexiderized quadratic equation
    Jun, KW
    Bae, JH
    Lee, YH
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (01): : 63 - 77
  • [6] The stability of N-dimensional quadratic functional inequality in non Archimedean Banach spaces
    Aribou, Y.
    Kabbaj, S.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1382 - 1400
  • [7] Orthogonal Stability of an Additive-Quadratic Functional Equation
    Choonkil Park
    Fixed Point Theory and Applications, 2011
  • [8] Orthogonal Stability of an Additive-Quadratic Functional Equation
    Park, Choonkil
    FIXED POINT THEORY AND APPLICATIONS, 2011, : 1 - 11
  • [9] An n-dimensional cubic functional equation and its Hyers-Ulam stability
    Bodaghi, Abasalt
    Pinelas, Sandra
    Vediyappan, Govindan
    Gunesekaran, Kokila
    JOURNAL OF ANALYSIS, 2020, 28 (03) : 663 - 682
  • [10] Stability of an additive-quadratic-quartic functional equation
    Kim, Gwang Hui
    Lee, Yang-Hi
    DEMONSTRATIO MATHEMATICA, 2020, 53 (01) : 1 - 7