Algebraic approach to quasi-exact solutions of the Dirac-Coulomb problem

被引:12
|
作者
Panahi, H. [1 ]
Baradaran, M. [1 ]
机构
[1] Univ Guilan, Dept Phys, Rasht 513351914, Iran
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2013年 / 128卷 / 04期
关键词
KLEIN-GORDON EQUATION; POSITION-DEPENDENT MASS; SHAPE-INVARIANT POTENTIALS; HOMOGENEOUS MAGNETIC-FIELD; EXACT SOLVABILITY; DIFFERENTIAL-OPERATORS; SCHRODINGER-EQUATION; PAULI EQUATION; ELECTRONS; SCALAR;
D O I
10.1140/epjp/i2013-13039-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Dirac equation in the presence of Coulomb electrostatic potential is solved and the quasiexact solutions are obtained via osp(2, 2) algebraization. The Lie-algebraic approach of quasi-exact solvability is applied to the problem and by constructing the matrix representation of the problem, the energy spectrum and thereby the corresponding spinor wave functions are obtained in terms of the polynomial components of osp(2, 2) superalgebra.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条