Deep Learning Contouring of Thoracic Organs At Risk

被引:0
|
作者
Peressutti, D. [1 ]
Aljabar, P. [1 ]
van Soest, J. [2 ]
Lustberg, T. [2 ]
van der Stoep, J. [2 ]
Dekker, A. [2 ]
van Elmpt, W. [2 ]
Gooding, M. [1 ]
机构
[1] Mirada Med Ltd, Sci & Med Technol, Oxford, England
[2] Maastricht Univ, Med Ctr, Dept Radiat Oncol, MAASTRO GROW Sch Oncol Dev Biol, Maastricht, Netherlands
基金
“创新英国”项目;
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU-FG-605-
引用
收藏
页码:3159 / 3159
页数:1
相关论文
共 50 条
  • [31] Deep convolutional neural networks for automatic segmentation of thoracic organs-at-risk in radiation oncology - use of non-domain transfer learning
    Vu, Charles C.
    Siddiqui, Zaid A.
    Zamdborg, Leonid
    Thompson, Andrew B.
    Quinn, Thomas J.
    Castillo, Edward
    Guerrero, Thomas M.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2020, 21 (06): : 108 - 113
  • [32] APPLICATIONS OF DEEP LEARNING FOR AUTOMATIC CONTOURING OF TUMOURS IN THE BRAIN
    Henderson, Robert
    Giambattista, Joshua
    Venugopal, Niranjan
    Omene, Egiroh
    Giambattista, Jonathan
    Kundapur, Vijayananda
    RADIOTHERAPY AND ONCOLOGY, 2020, 150 : S34 - S34
  • [33] Deep-learning-based Detection and Segmentation of Organs at Risk in Head and Neck
    Wu, Xueyu
    Wang, Zhonghua
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 910 - 915
  • [34] Clinically applicable deep learning framework for organs at risk delineation in CT images
    Hao Tang
    Xuming Chen
    Yang Liu
    Zhipeng Lu
    Junhua You
    Mingzhou Yang
    Shengyu Yao
    Guoqi Zhao
    Yi Xu
    Tingfeng Chen
    Yong Liu
    Xiaohui Xie
    Nature Machine Intelligence, 2019, 1 : 480 - 491
  • [35] Training and Validation of a Commercial Deep Learning Contouring Platforms
    Koo, J.
    Caudell, J.
    Feygelman, V.
    Moros, E.
    Latifi, K.
    Lee, H.
    MEDICAL PHYSICS, 2020, 47 (06) : E559 - E559
  • [36] Application of deep learning to auto -delineation of target volumes and organs at risk in radiotherapy
    Chen, M.
    Wu, S.
    Zhao, W.
    Zhou, Y.
    Zhou, Y.
    Wang, G.
    CANCER RADIOTHERAPIE, 2022, 26 (03): : 494 - 501
  • [37] Clinically applicable deep learning framework for organs at risk delineation in CT images
    Tang, Hao
    Chen, Xuming
    Liu, Yang
    Lu, Zhipeng
    You, Junhua
    Yang, Mingzhou
    Yao, Shengyu
    Zhao, Guoqi
    Xu, Yi
    Chen, Tingfeng
    Liu, Yong
    Xie, Xiaohui
    NATURE MACHINE INTELLIGENCE, 2019, 1 (10) : 480 - 491
  • [38] VARIATIONS IN THE CONTOURING OF ORGANS AT RISK: TEST CASE FROM A PATIENT WITH OROPHARYNGEAL CANCER
    Nelms, Benjamin E.
    Tome, Wolfgang A.
    Robinson, Greg
    Wheeler, James
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2012, 82 (01): : 368 - 378
  • [39] SegTHOR: Segmentation of Thoracic Organs at Risk in CT images
    Lambert, Zoe
    Petitjean, Caroline
    Dubray, Bernard
    Ruan, Su
    2020 TENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2020,
  • [40] The emerging role of radiation therapists in contouring organs at risk for rectal cancer.
    Negi, P.
    Thigle, R.
    Jain, J.
    Mani, S.
    Gudi, S.
    Krishnatry, R.
    Engineer, R.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S2106 - S2106