Deep Learning Contouring of Thoracic Organs At Risk

被引:0
|
作者
Peressutti, D. [1 ]
Aljabar, P. [1 ]
van Soest, J. [2 ]
Lustberg, T. [2 ]
van der Stoep, J. [2 ]
Dekker, A. [2 ]
van Elmpt, W. [2 ]
Gooding, M. [1 ]
机构
[1] Mirada Med Ltd, Sci & Med Technol, Oxford, England
[2] Maastricht Univ, Med Ctr, Dept Radiat Oncol, MAASTRO GROW Sch Oncol Dev Biol, Maastricht, Netherlands
基金
“创新英国”项目;
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
TU-FG-605-
引用
收藏
页码:3159 / 3159
页数:1
相关论文
共 50 条
  • [1] Time-saving evaluation of deep learning contouring of thoracic organs at risk
    Lustberg, T.
    Van der Stoep, J.
    Peressutti, D.
    Aljabar, P.
    Van Elmpt, W.
    Van Soest, J.
    Gooding, M.
    Dekker, A.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S1169 - S1169
  • [2] Anatomical contouring variability in thoracic organs at risk
    McCall, Ross
    MacLennan, Grayden
    Taylor, Matthew
    Lenards, Nishele
    Nelms, Benjamin E.
    Koshy, Matthew
    Lemons, Jeffrey
    Hunzeker, Ashley
    Medical Dosimetry, 2016, 41 (04) : 344 - 350
  • [3] Quantitative evaluation of deep learning contouring of head and neck organs at risk
    Bakker, H.
    Peressutti, D.
    Aljabar, P.
    Van Dijk, L. V.
    Van den Bosch, L.
    Gooding, M.
    Brouwer, C. L.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S217 - S218
  • [4] Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring
    van Dijk, Lisanne V.
    Van den Bosch, Lisa
    Aljabar, Paul
    Peressutti, Devis
    Both, Stefan
    Steenbakkers, Roel. J. H. M.
    Langendijk, Johannes A.
    Gooding, Mark J.
    Brouwer, Charlotte L.
    RADIOTHERAPY AND ONCOLOGY, 2020, 142 : 115 - 123
  • [5] External validation of deep learning-based contouring of head and neck organs at risk
    Brunenberg, Ellen J. L.
    Steinseifer, Isabell K.
    van den Bosch, Sven
    Kaanders, Johannes H. A. M.
    Brouwer, Charlotte L.
    Gooding, Mark J.
    van Elmpt, Wouter
    Monshouwer, Rene
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2020, 15 : 8 - 15
  • [6] External validation of deep learning-based contouring of head and neck organs at risk
    Brunenberg, E.
    Steinseifer, I.
    Van den Bosch, S.
    Kaanders, H.
    Brouwer, C.
    Monshouwer, R.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S341 - S342
  • [7] Determining the Dosimetric Accuracy of Deep Learning Based Fully Automated Registration -Segmentation Approach for Thoracic Cancer Organs -at-Risk Contouring
    Choi, C.
    Thor, M.
    Jiang, J.
    Rimner, A.
    Veeraraghavan, H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E656 - E657
  • [8] MRI-based deep learning auto-contouring for organs-at-risk in gynecological brachytherapy
    Gonzalez, P.
    Mans, A.
    Schaake, E.
    Nowee, M.
    van der Heide, U.
    Simoes, R.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S768 - S769
  • [9] Evaluation of a deep-learning segmentation software in thoracic organs at risk: an early analysis
    Boschetti, A.
    Votta, C.
    Re, A.
    Piro, D.
    Marras, M.
    D'Aviero, A.
    Catucci, F.
    Cusumano, D.
    Di Dio, C.
    Menna, S.
    Iezzi, M.
    Quaranta, F. V.
    Flore, C.
    Sanna, E. G.
    Piccari, D.
    Mattiucci, G. C.
    Valentini, V.
    RADIOTHERAPY AND ONCOLOGY, 2022, 170 : S299 - S300
  • [10] Variations in the Contouring of important Organs at Risk
    Grone, J.
    Meyners, J.
    Delfs, B.
    Mangangou, A-W
    Burke, E.
    Muru, A.
    Failing, T.
    Schoenfeld, A.
    Stelljes, T. S.
    Poppe, B.
    Willborn, K. C.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2015, 191 : S47 - S48