Solid Electrolyte Interphase on Native Oxide-Terminated Silicon Anodes for Li-Ion Batteries

被引:276
作者
Cao, Chuntian [1 ,2 ]
Abate, Iwnetim Iwnetu [1 ,2 ,3 ,4 ]
Sivonxay, Eric [5 ]
Shyam, Badri [1 ]
Jia, Chunjing [3 ,4 ]
Moritz, Brian [3 ,4 ]
Devereaux, Thomas P. [3 ,4 ]
Persson, Kristin A. [5 ]
Steinruck, Hans-Georg [1 ]
Toney, Michael F. [1 ]
机构
[1] SLAC Natl Accelerator Lab, SSRL Mat Sci Div, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[4] Stanford Univ, Menlo Pk, CA 94025 USA
[5] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; SITU X-RAY; SINGLE-CRYSTAL SI(100); IN-SITU; THIN-FILM; SEI FORMATION; AB-INITIO; NANOSILICON ELECTRODES; LNTERPHASE FORMATION; NANOSCALE STRUCTURE;
D O I
10.1016/j.joule.2018.12.013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To shed light on the formation process and structure of the solid electrolyte interphase (SEI) layer on native oxide-terminated silicon wafer anodes from a carbonate-based electrolyte (LP30), we combined in situ synchrotron X-ray reflectivity, linear sweep voltammetry, ex situ X-ray photoelectron spectroscopy, and first principles calculations from the Materials Project. We present in situ sub-nanometer resolution structural insights and compositional information of the SEI, as well as predicted equilibrium phase stability. Combining these findings, we observe two well-defined inorganic SEI layers next to the Si anode-a bottom-SEI layer (adjacent to the electrode) formed via the lithiation of the native oxide, and a top-SEI layer mainly consisting of the electrolyte decomposition product LiF. Our study provides novel mechanistic insights into the SEI growth process on Si, and we discuss several important implications regarding ion and electron transport through the SEI layer.
引用
收藏
页码:762 / 781
页数:20
相关论文
共 99 条
[1]   Robust NaO2 Electrochemistry in Aprotic Na-O2 Batteries Employing Ethereal Electrolytes with a Protic Additive [J].
Abate, Iwnetim I. ;
Thompson, Leslie E. ;
Kim, Ho-Cheol ;
Aetukuri, Nagaphani B. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (12) :2164-2169
[2]  
Als-Nielsen J., 2001, ELEMENTS MODERN XRAY
[3]  
[Anonymous], 1950, Annales De Physique (paris), DOI DOI 10.1051/ANPHYS/195012050596
[4]   Electrochemically controlled transport of lithium through ultrathin SiO2 -: art. no. 023516 [J].
Ariel, N ;
Ceder, G ;
Sadoway, DR ;
Fitzgerald, EA .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (02)
[5]   Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries [J].
Arreaga-Salas, David E. ;
Sra, Amandeep K. ;
Roodenko, Katy ;
Chabal, Yves J. ;
Hinkle, Christopher L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :9072-9077
[6]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[7]   Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G ;
Cho, K ;
Joannopoulos, J .
PHYSICAL REVIEW B, 1997, 56 (03) :1354-1365
[8]   Oxidation Protection with Amorphous Surface Oxides: Thermodynamic Insights from Ab Initio Simulations on Aluminum [J].
Aykol, Muratahan ;
Persson, Kristin A. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (03) :3039-3045
[9]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[10]   Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure Published as part of the Accounts of Chemical Research special issue "Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales" [J].
Borodin, Oleg ;
Ren, Xiaoming ;
Vatamanu, Jenel ;
Cresce, Arthur von Wald ;
Knap, Jaroslaw ;
Xu, Kang .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (12) :2886-2894