Unique continuation and approximate controllability for a degenerate parabolic equation

被引:36
作者
Cannarsa, Piermarco [1 ]
Tort, Jacques [2 ]
Yamamoto, Masahiro [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[2] Univ Toulouse 3, Inst Math Toulouse, CNRS, UMR 5219, F-31062 Toulouse 4, France
[3] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
degenerate parabolic equations; unique continuation; approximate controllability; local Carleman estimate; NULL CONTROLLABILITY; OPERATORS;
D O I
10.1080/00036811.2011.639766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article studies unique continuation for weakly degenerate parabolic equations in one-space dimension. A new Carleman estimate of local type is obtained to deduce that all solutions that vanish on the degeneracy set, together with their conormal derivative, are identically equal to zero. An approximate controllability result for weakly degenerate parabolic equations under Dirichlet boundary condition is deduced.
引用
收藏
页码:1409 / 1425
页数:17
相关论文
共 11 条
[1]   Carleman estimates for degenerate parabolic operators with applications to null controllability [J].
Alabau-Boussouira, F. ;
Cannarsa, P. ;
Fragnelli, G. .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (02) :161-204
[2]  
Bensoussan A., 2007, Representation and Control of Infinite Dimensional Systems, Systems Control Found
[3]  
Buchot JM, 2002, INT S NUM M, V139, P31
[4]   Carleman estimates for a class of degenerate parabolic operators [J].
Cannarsa, P. ;
Martinez, P. ;
Vancostenoble, J. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) :1-19
[5]  
Cannarsa P, 2005, ADV DIFFERENTIAL EQU, V10, P153
[6]   Determination of source terms in a degenerate parabolic equation [J].
Cannarsa, P. ;
Tort, J. ;
Yamamoto, M. .
INVERSE PROBLEMS, 2010, 26 (10)
[7]   Null controllability of degenerate parabolic operators with drift [J].
Cannarsa, Piermarco ;
Fragnelli, Genni ;
Rocchetti, Dario .
NETWORKS AND HETEROGENEOUS MEDIA, 2007, 2 (04) :695-715
[8]  
Cannarsa P, 2008, CONTROL CYBERN, V37, P831
[9]   Controllability results for a class of one-dimensional degenerate parabolic problems in nondivergence form [J].
Cannarsa, Piermarco ;
Fragnelli, Genni ;
Rocchetti, Dario .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (04) :583-616
[10]  
Fursikov A.V., 1996, Controllability of Evolution Equations