Emerging Applications of Artificial Intelligence in Neuro-Oncology

被引:176
作者
Rudie, Jeffrey D. [1 ]
Rauschecker, Andreas M. [2 ]
Bryan, R. Nick [3 ]
Davatzikos, Christos [1 ]
Mohan, Suyash [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Div Neuroradiol, Dept Radiol, 3400 Spruce St, Philadelphia, PA 19104 USA
[2] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA
[3] Univ Texas Austin, Dell Med Sch, Dept Diagnost Med, Austin, TX 78712 USA
关键词
GROWTH-FACTOR RECEPTOR; MAGNETIC-RESONANCE-SPECTROSCOPY; RADIATION-THERAPY; RESPONSE ASSESSMENT; GRADE GLIOMAS; BRAIN-TUMORS; IMAGING SURROGATES; METHYLATION STATUS; TRUE PROGRESSION; MALIGNANT GLIOMA;
D O I
10.1148/radiol.2018181928
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Due to the exponential growth of computational algorithms, artificial intelligence (AI) methods are poised to improve the precision of diagnostic and therapeutic methods in medicine. The field of radiomics in neuro-oncology has been and will likely continue to be at the forefront of this revolution. A variety of AI methods applied to conventional and advanced neuro-oncology MRI data can already delineate infiltrating margins of diffuse gliomas, differentiate pseudoprogression from true progression, and predict recurrence and survival better than methods used in daily clinical practice. Radiogenomics will also advance our understanding of cancer biology, allowing noninvasive sampling of the molecular environment with high spatial resolution and providing a systems-level understanding of underlying heterogeneous cellular and molecular processes. By providing in vivo markers of spatial and molecular heterogeneity, these AI-based radiomic and radiogenomic tools have the potential to stratify patients into more precise initial diagnostic and therapeutic pathways and enable better dynamic treatment monitoring in this era of personalized medicine. Although substantial challenges remain, radiologic practice is set to change considerably as AI technology is further developed and validated for clinical use. (C) RSNA, 2019
引用
收藏
页码:607 / 618
页数:12
相关论文
共 111 条
[1]  
Akbari H, 2018, 56 ANN M AM SOC NEUR
[2]   Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma [J].
Akbari, Hamed ;
Macyszyn, Luke ;
Da, Xiao ;
Bilello, Michel ;
Wolf, Ronald L. ;
Martinez-Lage, Maria ;
Biros, George ;
Alonso-Basanta, Michelle ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEUROSURGERY, 2016, 78 (04) :572-580
[3]   In vivo evaluation of EGFRvIII mutation in primary glioblastoma patients via complex multiparametric MRI signature [J].
Akbari, Named ;
Bakas, Spyridon ;
Pisapia, Jared M. ;
Nasrallah, MacLean P. ;
Rozycki, Martin ;
Martinez-Lage, Maria ;
Morrissette, Jennifer J. D. ;
Bilello, Michel ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
NEURO-ONCOLOGY, 2018, 20 (08) :1068-1079
[4]   Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence [J].
Akkus, Zeynettin ;
Ali, Issa ;
Sedlar, Jiri ;
Agrawal, Jay P. ;
Parney, Ian F. ;
Giannini, Caterina ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :469-476
[5]   Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions [J].
Akkus, Zeynettin ;
Galimzianova, Alfiia ;
Hoogi, Assaf ;
Rubin, Daniel L. ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :449-459
[6]   Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing [J].
AlBadawy, Ehab A. ;
Saha, Ashirbani ;
Mazurowski, Maciej A. .
MEDICAL PHYSICS, 2018, 45 (03) :1150-1158
[7]   Computer-Aided Detection of Metastatic Brain Tumors Using Automated Three-Dimensional Template Matching [J].
Ambrosini, Robert D. ;
Wang, Peng ;
O'Dell, Walter G. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 31 (01) :85-93
[8]   Detection of 2-Hydroxyglutarate in IDH-Mutated Glioma Patients by In Vivo Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy [J].
Andronesi, Ovidiu C. ;
Kim, Grace S. ;
Gerstner, Elizabeth ;
Batchelor, Tracy ;
Tzika, Aria A. ;
Fantin, Valeria R. ;
Vander Heiden, Matthew G. ;
Sorensen, A. Gregory .
SCIENCE TRANSLATIONAL MEDICINE, 2012, 4 (116)
[9]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[10]  
[Anonymous], 2017, COMMUN ACM, DOI DOI 10.1145/3065386