(sic)τ-Embedded and (sic)τΦ-Embedded Subgroups of Finite Groups

被引:1
作者
Chen, X. [1 ]
Guo, W. [1 ]
Skiba, A. N. [2 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Peoples R China
[2] F Skorina Gomel State Univ, Gomel 246019, BELARUS
关键词
finite group; subgroup functor; (sac)(tau)-embedded subgroup; (sac)(tau Phi)-embedded subgroup; supersoluble group; QUASI-NORMAL SUBGROUPS; EMBEDDED SUBGROUPS;
D O I
10.1007/s10469-015-9343-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (sic) be a nonempty formation of groups, tau a subgroup functor, and H a p-subgroup of a finite group G. Suppose also that G = G/H-G and H = H/H-G. We say that H is (sic)(tau)-embedded ((sic)(tau Phi)-embedded) in G if, for some quasinormal subgroup T of G and some tau-subgroup S of G contained in H, the subgroup HT is S-quasinormal in G and H boolean AND T <= SZ((sic)Phi)(G) (resp., H boolean AND T <= SZ((sic)Phi)(G)). Using the notions of (sic)(tau)-embedded and (sic)(tau)-Phi-embedded subgroups, we give some characterizations of the structure of finite groups. A number of earlier concepts and related results are further developed and unified.
引用
收藏
页码:226 / 244
页数:19
相关论文
共 44 条
[21]   On FΦ*-hypercentral subgroups of finite groups [J].
Guo, Wenbin ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2012, 372 :275-292
[22]   On factorizations of finite groups with F-hypercentral intersections of the factors [J].
Guo, Wenbin ;
Skiba, Alexander N. .
JOURNAL OF GROUP THEORY, 2011, 14 (05) :695-708
[23]   Finite groups with systems of I£-embedded subgroups [J].
Guo WenBin ;
Skiba, Alexander N. .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (09) :1909-1926
[24]   Finite groups with given s-embedded and n-embedded subgroups [J].
Guo, Wenbin ;
Skiba, Alexander N. .
JOURNAL OF ALGEBRA, 2009, 321 (10) :2843-2860
[25]   c-semipermutable subgroups of finite groups [J].
Hu, B. ;
Guo, W. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (01) :180-188
[26]   ON FS-QUASINORMAL SUBGROUPS OF FINITE GROUPS [J].
Huang, Jianhong .
COMMUNICATIONS IN ALGEBRA, 2010, 38 (11) :4063-4076
[27]  
Huppert B., 1982, Finite Groups III
[28]  
Huppert B., 1967, Die Grundlehren der mathematischen Wissenschaften, V134
[29]  
Kegel OH., 1962, Math.Z, V78, P205, DOI [DOI 10.1007/BF01195169, 10.1007/BF01195169]
[30]   On Π-property and Π-normality of subgroups of finite groups [J].
Li, Baojun .
JOURNAL OF ALGEBRA, 2011, 334 (01) :321-337