PREDICTING THE PROPERTIES OF CORRUGATED BASE PAPERS USING MULTIPLE LINEAR REGRESSION AND ARTIFICIAL NEURAL NETWORKS

被引:11
作者
Adamopoulos, Stergios [1 ]
Karageorgos, Anthony [2 ]
Rapti, Elli [3 ]
Birbilis, Dimitris [2 ]
机构
[1] Linnaeus Univ, Dept Forestry & Wood Technol, Vaxjo, Sweden
[2] Technol Educ Inst Thessaly, Dept Wood & Furniture Design & Technol, Kardhitsa, Greece
[3] Ctr Res & Technol Hellas CERTH, Inst Res & Technol IRETETH, Volos, Greece
来源
DREWNO | 2016年 / 59卷 / 198期
关键词
recovered fibres; linerboard; corrugating medium; fibre characteristics; paper properties; multiple linear regression; artificial neural networks; PACKAGING GRADE PAPERS; PULP; QUALITY; MODEL;
D O I
10.12841/wood.1644-3985.144.13
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
The difficulty in predicting the properties and behaviour of paper products produced using heterogeneous raw materials with high percentages of recovered fibres poses restrictions on their efficient and effective use as corrugated packaging materials. This work presents predictive models for the mechanical properties of corrugated base papers (liner and fluting-medium) from fibre and physical property data using multiple linear regression and artificial neural networks. The most significant results were obtained for the prediction of the tensile strength of liners in the cross direction from the origin (wood type, pulp method) of the fibres using linear regression, and the prediction of the compressive strength of fluting-medium in the longitudinal (machine) direction, according to the short-span test, using a neural network with one hidden layer with 6 neurons, with coefficients of determination at 95.14% and 99.28%, respectively.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
[31]   Predicting streamflows to a multipurpose reservoir using artificial neural networks and regression techniques [J].
Hassan, Muhammad ;
Shamim, Muhammad Ali ;
Hashmi, Hashim Nisar ;
Ashiq, Syed Zishan ;
Ahmed, Imtiaz ;
Pasha, Ghufran Ahmed ;
Naeem, Usman Ali ;
Ghumman, Abdul Razzaq ;
Han, Dawei .
EARTH SCIENCE INFORMATICS, 2015, 8 (02) :337-352
[32]   Prediction of arabica coffee production using artificial neural network and multiple linear regression techniques [J].
Kittichotsatsawat, Yotsaphat ;
Tippayawong, Nakorn ;
Tippayawong, Korrakot Yaibuathet .
SCIENTIFIC REPORTS, 2022, 12 (01)
[33]   Multiple linear regression and artificial neural networks for delta-endotoxin and protease yields modelling of Bacillus thuringiensis [J].
Ennouri K. ;
Ben Ayed R. ;
Triki M.A. ;
Ottaviani E. ;
Mazzarello M. ;
Hertelli F. ;
Zouari N. .
3 Biotech, 2017, 7 (3)
[34]   Crystal structure prediction in orthorhombic ABO3 perovskites by multiple linear regression and artificial neural networks [J].
Aleksovska, Slobotka ;
Dimitrovska, Sandra ;
Kuzmanovski, Igor .
ACTA CHIMICA SLOVENICA, 2007, 54 (03) :574-582
[35]   Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes [J].
Meerasri, Jitrawadee ;
Sothornvit, Rungsinee .
CASE STUDIES IN THERMAL ENGINEERING, 2022, 33
[36]   Prediction of surface roughness of laser selective metallization of ceramics by multiple linear regression and artificial neural networks approaches [J].
Wang, Li ;
Silva, Lisbeth ;
Suess-Wolf, Robert ;
Franke, Joerg .
JOURNAL OF LASER APPLICATIONS, 2020, 32 (04)
[37]   Modeling Blanking Process Using Multiple Regression Analysis and Artificial Neural Networks [J].
Emad S. Al-Momani ;
Ahmad T. Mayyas ;
Ibrahim Rawabdeh ;
Rajaa Alqudah .
Journal of Materials Engineering and Performance, 2012, 21 :1611-1619
[38]   Modeling Blanking Process Using Multiple Regression Analysis and Artificial Neural Networks [J].
Al-Momani, Emad S. ;
Mayyas, Ahmad T. ;
Rawabdeh, Ibrahim ;
Alqudah, Rajaa .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2012, 21 (08) :1611-1619
[39]   Predicting tanker main engine power using regression analysis and artificial neural networks [J].
Gunes, Umit ;
Bashan, Veysi ;
Ozsari, Ibrahim ;
Karakurt, Asim Sinan .
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2023, 41 (02) :216-225
[40]   Prediction of recycled coarse aggregate concrete mechanical properties using multiple linear regression and artificial neural network [J].
Patil, Suhas Vijay ;
Balakrishna Rao, K. ;
Nayak, Gopinatha .
JOURNAL OF ENGINEERING DESIGN AND TECHNOLOGY, 2023, 21 (06) :1690-1709