Numerical approximation of the general compressible Stokes problem

被引:9
作者
Fettah, A. [1 ]
Gallouet, T. [1 ]
机构
[1] Aix Marseille Univ, Dept Math, F-13453 Marseille 13, France
关键词
compressible Stokes equations; finite element method; finite volume method; FINITE VOLUME SCHEME; EQUATIONS;
D O I
10.1093/imanum/drs024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a discretization for the compressible Stokes problem with an equation of state of the form p=phi(rho) (where p stands for the pressure and rho for the density, and phi is a superlinear nondecreasing function from R to R). This scheme is based on Crouzeix-Raviart approximation spaces. The discretization of the momentum balance is obtained by the usual finite element technique. The discrete mass balance is obtained by a finite volume scheme, with an upwinding of the density, and two additional terms. We prove the existence of a discrete solution and the convergence of this approximate solution to a solution of the continuous problem.
引用
收藏
页码:922 / 951
页数:30
相关论文
共 50 条
  • [21] The initial value problem of the fractional compressible Navier-Stokes-Poisson system
    Wang, Shu
    Zhang, Shuzhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 438
  • [22] On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem
    Hamid Ouaissa
    Abdelkrim Chakib
    Abdeljalil Nachaoui
    Mourad Nachaoui
    Applied Mathematics & Optimization, 2022, 85
  • [23] On Numerical Approaches for Solving an Inverse Cauchy Stokes Problem
    Ouaissa, Hamid
    Chakib, Abdelkrim
    Nachaoui, Abdeljalil
    Nachaoui, Mourad
    APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (01)
  • [24] Numerical approximation of the Newtonian film blowing problem
    Ervin, VJ
    Shepherd, JJ
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) : 1687 - 1707
  • [25] Second-order invariant domain preserving approximation of the compressible Navier-Stokes equations
    Guermond, Jean-Luc
    Maier, Matthias
    Popav, Bojan
    Tomas, Ignacio
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 375 (375)
  • [26] Numerical approximation of a viscoelastic frictional contact problem
    Rodriguez-Aros, Angel
    Sofonea, Mircea
    Viano, Juan
    COMPTES RENDUS MECANIQUE, 2006, 334 (05): : 279 - 284
  • [27] Numerical Approximation of an Axisymmetric Elastoacoustic Eigenvalue Problem
    Querales, J.
    Venegas, P.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (05) : 1420 - 1438
  • [28] COMPRESSIBLE NAVIER-STOKES SYSTEM WITH GENERAL INFLOW-OUTFLOW BOUNDARY DATA
    Chang, T.
    Jin, B. J.
    Novotny, A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 1238 - 1278
  • [29] An MHD Stokes eigenvalue problem and its approximation by a spectral collocation method
    Turk, Onder
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (09) : 2045 - 2056
  • [30] A finite element scheme for the numerical solution of the Navier-Stokes/Biot coupled problem
    Lozovskiy, Alexander
    Olshanskii, Maxim A.
    Vassilevski, Yuri V.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2022, 37 (03) : 159 - 174