Numerical approximation of the general compressible Stokes problem

被引:9
作者
Fettah, A. [1 ]
Gallouet, T. [1 ]
机构
[1] Aix Marseille Univ, Dept Math, F-13453 Marseille 13, France
关键词
compressible Stokes equations; finite element method; finite volume method; FINITE VOLUME SCHEME; EQUATIONS;
D O I
10.1093/imanum/drs024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a discretization for the compressible Stokes problem with an equation of state of the form p=phi(rho) (where p stands for the pressure and rho for the density, and phi is a superlinear nondecreasing function from R to R). This scheme is based on Crouzeix-Raviart approximation spaces. The discretization of the momentum balance is obtained by the usual finite element technique. The discrete mass balance is obtained by a finite volume scheme, with an upwinding of the density, and two additional terms. We prove the existence of a discrete solution and the convergence of this approximate solution to a solution of the continuous problem.
引用
收藏
页码:922 / 951
页数:30
相关论文
共 13 条
[1]   A proof of the inf-sup condition for the Stokes equations on Lipschitz domains [J].
Bramble, JH .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (03) :361-371
[2]  
CIARLET PG, 1991, HDB NUMERICAL ANAL, V2
[3]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[4]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[5]  
Ern A., 2004, APPL MATH SCI, V159
[6]   CONVERGENCE OF THE MAC SCHEME FOR THE COMPRESSIBLE STOKES EQUATIONS [J].
Eymard, R. ;
Gallouet, T. ;
Herbin, R. ;
Latche, J. -C. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (06) :2218-2246
[7]  
Eymard R, 2010, MATH COMPUT, V79, P649, DOI 10.1090/S0025-5718-09-02310-2
[8]  
Feireisl E., 2004, OXFORD LECT SERIES M, V26
[9]   Compressible Stokes Problem with General EOS [J].
Fettah, A. ;
Gallouet, T. .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 :457-465
[10]   A CONVERGENT FINITE ELEMENT-FINITE VOLUME SCHEME FOR THE COMPRESSIBLE STOKES PROBLEM. PART I: THE ISOTHERMAL CASE [J].
Gallouet, T. ;
Herbin, R. ;
Latche, J. -C. .
MATHEMATICS OF COMPUTATION, 2009, 78 (267) :1333-1352