Hyperparameter estimation for satellite image restoration using a MCMC maximum-likelihood method

被引:44
作者
Jalobeanu, A
Blanc-Féraud, L
Zerubia, J
机构
[1] INRIA, Project Ariana, CNRS INRIA & UNSA Joint Res Grp, F-06902 Sophia Antipolis, France
[2] CNRS, UNSA, Lab I3S, Sophia Antipolis, France
关键词
regularization; phi-function; hyperparameters; variational model; Markov random field; estimation; sampling; MCMC; maximum-likelihood; satellite images;
D O I
10.1016/S0031-3203(00)00178-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The satellite image deconvolution problem is ill-posed and must be regularized. Herein, we use an edge-preserving regularization model using a co function, involving two hyperparameters. Our goal is to estimate the optimal parameters in order to automatically reconstruct images. We propose to use the maximum-likelihood estimator (MLE), applied to the observed image. We need sampling from prior and posterior distributions. Since the convolution prevents use of standard samplers, we have developed a modified Geman-Yang algorithm, using an auxiliary variable and a cosine transform. We present a Markov chain Monte Carlo maximum-likelihood (MCMCML) technique which is able to simultaneously achieve the estimation and the reconstruction. (C) 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:341 / 352
页数:12
相关论文
共 30 条
[11]   CONSTRAINED RESTORATION AND THE RECOVERY OF DISCONTINUITIES [J].
GEMAN, D ;
REYNOLDS, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (03) :367-383
[12]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[13]   MONTE-CARLO SAMPLING METHODS USING MARKOV CHAINS AND THEIR APPLICATIONS [J].
HASTINGS, WK .
BIOMETRIKA, 1970, 57 (01) :97-&
[14]   IMAGE RESTORATION BY METHOD OF LEAST SQUARES [J].
HELSTROM, CW .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1967, 57 (03) :297-&
[15]   Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data [J].
Higdon, DM ;
Bowsher, JE ;
Johnson, VE ;
Turkington, TG ;
Gilland, DR ;
Jaszczak, RJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (05) :516-526
[16]   SINUSOIDAL FAMILY OF UNITARY TRANSFORMS [J].
JAIN, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (04) :356-365
[17]  
JALOBEANU A, 1998, 3469 INRIA
[18]  
KHOUMRI M, 1998, ICIP CHIC US 4 7 OCT
[19]  
LADAMARD J, 1923, LECT CAUCH PROBL LIN
[20]   SIMULTANEOUS PARAMETER-ESTIMATION AND SEGMENTATION OF GIBBS RANDOM-FIELDS USING SIMULATED ANNEALING [J].
LAKSHMANAN, S ;
DERIN, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (08) :799-813