Developing BiCOR and CORS methods for coupled Sylvester-transpose and periodic Sylvester matrix equations

被引:72
作者
Hajarian, Masoud [1 ]
机构
[1] Shahid Beheshti Univ, Fac Math Sci, Dept Math, Tehran 19839, Iran
关键词
BiCOR method; CURS method; Iterative method; Periodic Sylvester matrix equation; Sylvester-transpose matrix equation; NONSYMMETRIC LINEAR-SYSTEMS; LSQR ITERATIVE METHOD; DESCRIPTOR SYSTEMS; LYAPUNOV EQUATIONS; ALGORITHMS; IDENTIFICATION;
D O I
10.1016/j.apm.2015.01.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently the biconjugate A-orthogonal residual (BiCOR) and the conjugate A-orthogonal residual squared (CURS) methods have been introduced for solving nonsymmetric linear systems Ax = b. This study directly develops the BiCOR and CURS methods to obtain matrix iterative methods for solving the coupled Sylvester-transpose matrix equations {Sigma(1)(K=1)(A(1,k)XB(1,k) + (C1,kXD1,k)-D-T + E1,kYF1,k) = M-1, Sigma(1)(K=1)(A(2,k)XB(1,k) + (C2,kXD2,k)-D-T + E2,kYF2,k) = M-2, and the coupled periodic Sylvester matrix equations {A(1,j)X(j)B(1,j) + C1,jXj+1D1,j + epsilon 1,jYjF1,j = M-1,M-j, for j = 1,2,....mu. A(2,j)X(j)B(2,j) + C2,jXj+1D2,j + epsilon 2,jYjF2,j = M-2,M-j, Numerical examples are given at the end of this paper to compare the accuracy and efficiency of the matrix iterative methods with other methods in the literature. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:6073 / 6084
页数:12
相关论文
共 50 条
[21]  
Enright W. H., 1978, ACM Transactions on Mathematical Software, V4, P127, DOI 10.1145/355780.355784
[22]   EIGENSTRUCTURE ASSIGNMENT IN DESCRIPTOR SYSTEMS [J].
FLETCHER, LR ;
KAUTSKY, J ;
NICHOLS, NK .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (12) :1138-1141
[23]   FAULT-DIAGNOSIS IN DYNAMIC-SYSTEMS USING ANALYTICAL AND KNOWLEDGE-BASED REDUNDANCY - A SURVEY AND SOME NEW RESULTS [J].
FRANK, PM .
AUTOMATICA, 1990, 26 (03) :459-474
[24]  
Gajic Z., 1995, Math. Sci. Engrg.
[25]  
GRANAT R., 2007, P 8 INT C APPL PAR C, P531
[26]  
Hajarian M, 2014, B IRAN MATH SOC, V40, P41
[30]   Convergence of ADGI methods for solving systems of linear matrix equations [J].
Hajarian, Masoud .
ENGINEERING COMPUTATIONS, 2014, 31 (04) :681-690