Multiplicity of solutions for a nonlinear boundary value problem in the upper half-space

被引:5
作者
Furtado, Marcelo Fernandes [1 ]
Vicente de Sousa, Karla Carolina [1 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
Nonlinear boundary conditions; Concave-convex problems; Critical trace problems; Half-space; Self-similar solutions; SELF-SIMILAR SOLUTIONS; CONVEX-CONCAVE PROBLEM; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; HEAT-EQUATION; EXISTENCE;
D O I
10.1016/j.jmaa.2020.124544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain multiple solutions for the nonlinear boundary value problem -Delta u - 1/2 (x . del u) = lambda a(x)vertical bar u vertical bar(q-2)u, in R-+(N), partial derivative u/partial derivative v = b(x')vertical bar u vertical bar(p-2)u, on partial derivative R-+(N), where R-+(N) = {(x ',x(N)): x' is an element of RN -1, x(N) > 0} is the upper half-space, N >= 3, lambda > 0 is a parameter, 1 < q < 2 < p <= 2(*) = 2(N - 1)/(N - 2). The potentials a and b satisfy mild conditions which allow( )us to use variational methods. In some results, they can be indefinite in sign. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 32 条
[1]  
Abreu EAM, 2006, ADV NONLINEAR STUD, V6, P133
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
ATKINSON FV, 1986, CR ACAD SCI I-MATH, V302, P99
[5]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[6]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[7]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216
[8]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137