Effects of N loading rate on CH4 and N2O emissions during cultivation and fallow periods from forage rice fields fertilized with liquid cattle waste

被引:6
作者
Riya, S. [1 ]
Zhou, S. [2 ]
Kobara, Y. [3 ]
Sagehashi, M. [4 ]
Terada, A. [1 ]
Hosomi, M. [1 ]
机构
[1] Tokyo Univ Agr & Technol, Grad Sch Engn, Koganei, Tokyo 1848588, Japan
[2] Shanghai Acad Agr Sci, Ecoenvironm Protect Res Inst, Shanghai 201403, Peoples R China
[3] Natl Inst Agroenvironm Sci, Div Organochem, Tsukuba, Ibaraki 3058604, Japan
[4] Natl Inst Publ Hlth, Dept Int Hlth & Collaborat, Wako, Saitama 3510197, Japan
基金
日本学术振兴会;
关键词
Greenhouse gas; Rice field; Cattle waste; Topdressing; Material cycling; NITROUS-OXIDE EMISSIONS; PADDY FIELDS; STRAW APPLICATION; METHANE EMISSION; WATER MANAGEMENT; SOIL; DENITRIFICATION; VARIETIES;
D O I
10.1016/j.jenvman.2015.06.051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of liquid cattle waste (LCW) as a fertilizer for forage rice is important for material recycling because it can promote biomass production, and reduce the use of chemical fertilizer. Meanwhile, increase in emission of greenhouse gases (GHGs), especially CH4 and N2O would be concerned. We conducted a field study to determine the optimum loading rate of LCW as N to promote forage rice growth with lower GHG emissions. The LCW was applied to forage rice fields, N100, N250, N500, and N750, at four different N loading rates of 107, 258, 522, and 786 kg N ha(-1), respectively, including 50 kg N ha(-1) of basal chemical fertilizer. The above-ground biomass yields increased 14.6-18.5 t ha(-1) with increases in N loading rates. During the cultivation period, both the CH4 and N2O fluxes increased with increases in LCW loading rates. In the treatments of N100, N250, N500, and N750, the cumulative CH4 emissions during the entire period, including cultivation and fallow period were 29.6, 18.1, 54.4, and 67.5 kg C ha(-1), respectively, whereas those of N2O were -0.15, -0.02,1.49, and 5.82 kg N ha(-1), respectively. Considering the greenhouse gas emissions and above-ground biomass, the yield-scaled CO2-equivalents (CO2-eqs) were 66.3, 35.9, 161, and 272 kg CO2 t(-1) for N100, N250, N500, and N750, respectively. These results suggest that N250 is the most appropriate LCW loading rate for promoting forage rice production with lower GHG emissions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:124 / 130
页数:7
相关论文
共 50 条
  • [31] Effects of soil spatial resolution on quantifying CH4 and N2O emissions from rice fields in the Tai Lake region of China by DNDC model
    Yu, D. S.
    Yang, H.
    Shi, X. Z.
    Warner, E. D.
    Zhang, L. M.
    Zhao, Q. G.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2011, 25
  • [32] Alternate Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey Soil of Central Italy
    Lagomarsino, Alessandra
    Agnelli, Alessandro Elio
    Linquist, Bruce
    Adviento-Borbe, Maria Arlene
    Agnelli, Alberto
    Gavina, Giacomo
    Ravaglia, Stefano
    Ferrara, Rossana Monica
    PEDOSPHERE, 2016, 26 (04) : 533 - 548
  • [33] Emissions of CH4 and N2O from a Wetland in Sanjiang Plain
    Guo, Yafen
    Wang, Zhenfen
    Song, Jinfeng
    ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6, 2012, 518-523 : 4859 - 4862
  • [34] N2O emissions at municipal solid waste landfill sites: Effects of CH4 emissions and cover soil
    Zhang, Houhu
    He, Pinjing
    Shao, Liming
    ATMOSPHERIC ENVIRONMENT, 2009, 43 (16) : 2623 - 2631
  • [35] Interactions between N application rate, CH4 oxidation and N2O production in soil
    Acton, S. D.
    Baggs, E. M.
    BIOGEOCHEMISTRY, 2011, 103 (1-3) : 15 - 26
  • [36] How are annual CH4, N2O, and NO emissions from rice-wheat system affected by nitrogen fertilizer rate and type?
    Lan, Ting
    Li, Mengxiao
    Han, Yong
    Deng, Ouping
    Tang, Xiaoyan
    Luo, Ling
    Zeng, Jian
    Chen, Guangdeng
    Yuan, Shu
    Wang, Changquan
    Gao, Xuesong
    APPLIED SOIL ECOLOGY, 2020, 150
  • [37] Effects of elevated CO2 concentration on CH4 and N2O emissions from paddy fields: A meta-analysis
    Yu, Haiyang
    Wang, Tianyu
    Huang, Qiong
    Song, Kaifu
    Zhang, Guangbin
    Ma, Jing
    Xu, Hua
    SCIENCE CHINA-EARTH SCIENCES, 2022, 65 (01) : 96 - 106
  • [38] Study on CH4 and N2O emissions from water-saving irrigation in Phaeozem paddy fields in cold areas
    Wang, F. Q.
    Guo, W.
    Zhu, S. J.
    Gong, X. L.
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2016, 37 (05) : 1077 - 1085
  • [39] Modeling CH4 and N2O emissions for continuous and noncontinuous flooding rice systems
    Liang, Hao
    Xu, Junzeng
    Hou, Huijing
    Qi, Zhiming
    Yang, Shihong
    Li, Yawei
    Hu, Kelin
    AGRICULTURAL SYSTEMS, 2022, 203
  • [40] Effects of Short-Term Tillage Managements on CH4 and N2O Emissions from a Double-Cropping Rice Field in Southern of China
    Tang, Haiming
    Li, Chao
    Shi, Lihong
    Cheng, Kaikai
    Wen, Li
    Li, Weiyan
    Xiao, Xiaoping
    AGRONOMY-BASEL, 2022, 12 (02):