Diffusive and nondiffusive limits of transport in nonmixing flows

被引:11
作者
Fannjiang, A
Komorowski, T
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Marie Curie Sklodowska Univ, Inst Math, PL-20031 Lublin, Poland
关键词
passive scalar; homogenization;
D O I
10.1137/S0036139900379432
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the passive scalar transport in a class of nonmixing Markovian flows with power-law spectra and correlation times. We establish a new diffusion regime under an optimal condition ( convergent Kubo formula) on the spatial/temporal structure of this family of flows. Under such a condition, the Peclet number of the problem may be infinite. We propose a general criterion for the diffusion regime that takes into account of both the effect of molecular diffusion and the spatial/temporal structure of the velocity field. We conjecture the criterion to be applicable in general for temporally ergodic, reversible Markovian flows. We show heuristically that the violation of this criterion may lead to a nondiffusive scaling limit.
引用
收藏
页码:909 / 923
页数:15
相关论文
共 16 条
[1]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[2]  
[Anonymous], B POLISH ACAD SCI MA
[3]   AN INTEGRAL-REPRESENTATION AND BOUNDS ON THE EFFECTIVE DIFFUSIVITY IN PASSIVE ADVECTION BY LAMINAR AND TURBULENT FLOWS [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (02) :339-391
[4]  
Belyaev Y. K., 1959, THEOR PROBAB APPL, V4, P402, DOI DOI 10.1137/1104040
[5]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[6]   Lyapunov exponents of Poisson shot-noise velocity fields [J].
Çaglar, M ;
Çinlar, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (01) :29-49
[7]  
Fabes E., 1993, LECT NOTES MATH, V1563, P54
[8]   Fractional Brownian motions and enhanced diffusion in a unidirectional wave-like turbulence [J].
Fannjiang, A ;
Komorowski, T .
JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) :1071-1095
[9]  
Fannjiang A, 2000, ANN APPL PROBAB, V10, P1100
[10]   Diffusion in turbulence [J].
Fannjiang, A ;
Papanicolaou, G .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 105 (03) :279-334