Trace formula and Spectral Riemann Surfaces for a class of tri-diagonal matrices

被引:10
作者
Djakov, P
Mityagin, B
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Sofia, Dept Math, Sofia 1164, Bulgaria
关键词
D O I
10.1016/j.jat.2005.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For tri-diagonal matrices arising in the simplified Jaynes-Cummings model, we give an asymptotics of the eigenvalues, prove a trace formula and show that the Spectral Riemann Surface is irreducible. (C) 2005 Published by Elsevier Inc.
引用
收藏
页码:293 / 326
页数:34
相关论文
共 40 条
[1]  
[Anonymous], COMPLEX VAR THEORY A
[2]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[3]   DOUBLE POINTS OF MATHIEUS DIFFERENTIAL EQUATION [J].
BLANCH, G ;
CLEMM, DS .
MATHEMATICS OF COMPUTATION, 1969, 23 (105) :97-&
[4]  
Blanch G., 1966, REND CIRC MAT PALERM, V15, P51
[5]   Eigenvalue asymptotics of a modified Jaynes-Cummings model with periodic modulations [J].
de Monvel, AB ;
Naboko, S ;
Silva, LO .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (01) :103-107
[6]   Simple and double eigenvalues of the Hill operator with a two-term potential [J].
Djakov, P ;
Mityagin, B .
JOURNAL OF APPROXIMATION THEORY, 2005, 135 (01) :70-104
[7]   Spectral measures and Jacobi matrices related to Laguerre-type systems of orthogonal polynomials [J].
Dombrowski, J ;
Pedersen, S .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (03) :421-433
[8]  
FAZULLIN ZY, 2002, J MATH SCI NEW YORK, V108, P608
[9]  
FAZULLIN ZY, 2001, MAT SBORNIK, V192, P87
[10]  
HUNTER C, 1981, STUD APPL MATH, V64, P113