Performance and cost of materials for lithium-based rechargeable automotive batteries

被引:2595
作者
Schmuch, Richard [1 ]
Wagner, Ralf [1 ]
Horpel, Gerhard [2 ]
Placke, Tobias [1 ]
Winter, Martin [1 ,3 ]
机构
[1] Univ Munster, MEET Battery Res Ctr, Munster, Germany
[2] GBH Gesell Batterie Know How mbH, Nottuln, Germany
[3] Forschungszentrum Julich, IEK 12, Helmholtz Inst Munster, Munster, Germany
关键词
ION BATTERIES; ACTIVE MATERIALS; CATHODE MATERIAL; ELECTROLYTES; LIMITS; METAL; ANODE; TECHNOLOGIES; MECHANISMS; ADDITIVES;
D O I
10.1038/s41560-018-0107-2
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 98 条
[1]   Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries [J].
Ahmed, Shabbir ;
Nelson, Paul A. ;
Gallagher, Kevin G. ;
Susarla, Naresh ;
Dees, Dennis W. .
JOURNAL OF POWER SOURCES, 2017, 342 :733-740
[2]   Future generations of cathode materials: an automotive industry perspective [J].
Andre, Dave ;
Kim, Sung-Jin ;
Lamp, Peter ;
Lux, Simon Franz ;
Maglia, Filippo ;
Paschos, Odysseas ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :6709-6732
[3]  
[Anonymous], 2015, ADV BATTERY TECHNOLO
[4]  
[Anonymous], 2017, REUTERS
[5]  
[Anonymous], ANL1132 CHEM SCI ENG
[6]   Best Practices for Mitigating Irreversible Capacity Loss of Negative Electrodes in Li-Ion Batteries [J].
Aravindan, Vanchiappan ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[7]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[8]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[9]   Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries [J].
Becking, Jens ;
Groebmeyer, Albert ;
Kolek, Martin ;
Rodehorst, Uta ;
Schulze, Susanne ;
Winter, Martin ;
Bieker, Peter ;
Stan, Marian Cristian .
ADVANCED MATERIALS INTERFACES, 2017, 4 (16)
[10]   Rechargeable Batteries: Grasping for the Limits of Chemistry [J].
Berg, Erik J. ;
Villevieille, Claire ;
Streich, Daniel ;
Trabesinger, Sigita ;
Novak, Petr .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2468-A2475