γ-total dominating graphs of paths and cycles

被引:8
作者
Wongsriya, Alongkot [1 ]
Trakultraipruk, Nantapath [2 ]
机构
[1] Mahidol Univ, Dept Math, Fac Sci, Bangkok 10400, Thailand
[2] Thammasat Univ, Fac Sci & Technol, Dept Math & Stat, Pathum Thani 12120, Thailand
来源
SCIENCEASIA | 2017年 / 43卷 / 05期
关键词
total dominating set; total dominating subset; total domination number;
D O I
10.2306/scienceasia1513-1874.2017.43.326
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A total dominating set for a graph G = (V(G), E(G)) is a subset D of V(G) such that every vertex in V(G) is adjacent to some vertex in D. The total domination number of G, denoted by gamma(t) (G), is the minimum cardinality of a total dominating set of G. A total dominating set of cardinality gamma(t) (G) is called a gamma-total dominating set. Let TD gamma be the set of all gamma-total dominating sets in G. We define the gamma-total dominating graph of G, denoted by T D-gamma (G), to be the graph whose vertex set is T D-gamma, and two gamma-total dominating sets D1 and D2 from T D-gamma are adjacent in T D-gamma (G) if D-1 = D-2 \{u} boolean OR {v} for some u is an element of D-2 and v is not an element of D-2. In this paper, we present gamma-total dominating graphs of paths and cycles.
引用
收藏
页码:326 / 333
页数:8
相关论文
共 11 条
[1]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[2]  
Fricke G.H., 2011, DISCUSS MATH GRAPH T, V31, P517, DOI DOI 10.7151/DMGT.1562
[3]   The k-Dominating Graph [J].
Haas, R. ;
Seyffarth, K. .
GRAPHS AND COMBINATORICS, 2014, 30 (03) :609-617
[4]  
Haynes T. W., 1998, Chapman & Hall/CRC Pure and Applied Mathematics
[5]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[6]  
Henning MA, 2000, J GRAPH THEOR, V35, P21, DOI 10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO
[7]  
2-F
[8]  
Kulli V. R., 1995, GRAPH THEORY NOTES N, VXXVIII, P12
[9]  
Kulli VR, 1996, INDIAN J PURE AP MAT, V27, P193
[10]  
Kulli VR, 2014, J DISCRETE MATH SCI, V17, P49, DOI DOI 10.1080/09720529.2014.881129