Modelling CO2 adsorption and separation on experimentally-realized B40 fullerene

被引:38
作者
Gao, Guoping [1 ]
Ma, Fengxian [1 ]
Jiao, Yalong [1 ]
Sun, Qiao [2 ]
Jiao, Yan [3 ]
Waclawik, Eric [1 ]
Dua, Aijun [1 ]
机构
[1] Queensland Univ Technol, Phys & Mech Engn Fac, Sch Chem, Garden Point Campus, Brisbane, Qld 4001, Australia
[2] Soochow Univ, Sch Radiol & Interdisciplinary Sci, Suzhou 215123, Peoples R China
[3] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
Boron fullerene; CO2; adsorption; separation; Density functional theory; CARBON CAPTURE; GAS SEPARATION; STORAGE;
D O I
10.1016/j.commatsci.2015.06.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Searching for efficient solid sorbents for CO2 adsorption and separation is important for developing emergent carbon reduction and natural gas purification technology. This work, for the first time, has investigated the adsorption of CO2 on newly experimentally realized cage-like B-40 fullerene (Zhai et al., 2014) based on density functional theory calculations. We find that the adsorption of CO2 on B-40 fullerene involves a relatively large energy barrier (1.21 eV), however this can be greatly decreased to 0.35 eV by introducing an extra electron. A practical way to realize negatively charged B-40 fullerene is then proposed by encapsulating a Li atom into the B40 fullerene (Li@B-40). Li@B-40 is found to be highly stable and can significantly enhance both the thermodynamics and kinetics of CO2 adsorption, while the adsorptions of N-2, CH4 and H-2 on the Li@B40 fullerene remain weak in comparison. Since B-40 fullerene has been successfully synthesized in a most recent experiment, our results highlight a new promising material for CO2 capture and separation for future experimental validation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 41
页数:4
相关论文
共 28 条
[1]   Endohedral and Exohedral Metalloborospherenes: M@B40 (M = Ca, Sr) and M&B40 (M = Be, Mg) [J].
Bai, Hui ;
Chen, Qiang ;
Zhai, Hua-Jin ;
Li, Si-Dian .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (03) :941-945
[2]  
Bennaceur K., 2008, CO2 capture and storage: a key carbon abatement option
[3]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[4]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[5]   Design of a Novel Fluidized Bed Reactor To Enhance Sorbent Performance in CO2 Capture Systems Using CaO [J].
Elena Diego, M. ;
Arias, Borja ;
Grasa, Gemma ;
Carlos Abanades, J. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (24) :10059-10071
[6]   Carbon capture and storage [J].
Gibbins, Jon ;
Chalmers, Hannah .
ENERGY POLICY, 2008, 36 (12) :4317-4322
[7]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[8]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[9]   Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction [J].
Guo, Shaojun ;
Zhang, Sen ;
Sun, Shouheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (33) :8526-8544
[10]   SYNCHRONOUS-TRANSIT METHOD FOR DETERMINING REACTION PATHWAYS AND LOCATING MOLECULAR TRANSITION-STATES [J].
HALGREN, TA ;
LIPSCOMB, WN .
CHEMICAL PHYSICS LETTERS, 1977, 49 (02) :225-232