The Flag Polynomial of the Minkowski Sum of Simplices

被引:3
作者
Agnarsson, Geir [1 ]
机构
[1] George Mason Univ, Dept Math Sci, Fairfax, VA 22030 USA
关键词
polytope; Minkowski sum; master polytope; flag polynomial; f-polynomial; POLYTOPES; PRODUCTS; SPHERES; INDEX;
D O I
10.1007/s00026-013-0189-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a polytope we define the flag polynomial, a polynomial in commuting variables related to the well-known flag vector and describe how to express the flag polynomial of the Minkowski sum of k standard simplices in a direct and canonical way in terms of the k-th master polytope P(k) where . The flag polynomial facilitates many direct computations. To demonstrate this we provide two examples; we first derive a formula for the f -polynomial and the maximum number of d-dimensional faces of the Minkowski sum of two simplices. We then compute the maximum discrepancy between the number of (0, d)-chains of faces of a Minkowski sum of two simplices and the number of such chains of faces of a simple polytope of the same dimension and on the same number of vertices.
引用
收藏
页码:401 / 426
页数:26
相关论文
共 17 条
[1]   On Minkowski Sums of Simplices [J].
Agnarsson, Geir ;
Morris, Walter D. .
ANNALS OF COMBINATORICS, 2009, 13 (03) :271-287
[2]   GENERALIZED DEHN-SOMMERVILLE RELATIONS FOR POLYTOPES, SPHERES AND EULERIAN PARTIALLY ORDERED SETS [J].
BAYER, MM ;
BILLERA, LJ .
INVENTIONES MATHEMATICAE, 1985, 79 (01) :143-157
[3]   A NEW INDEX FOR POLYTOPES [J].
BAYER, MM ;
KLAPPER, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (01) :33-47
[4]  
Buchstaber V. M., 2010, ARXIV10020810V1MATHC
[5]  
Buchstaber V. M., 2010, ARXIV10111536V1MATHC
[6]  
[Бухштабер Виктор Матвеевич Buchstaber Victor Matveevich], 2011, [Успехи математических наук, Russian Mathematical Surveys, Uspekhi matematicheskikh nauk], V66, P67, DOI 10.4213/rm9421
[7]   Inequalities for cd-indices of joins and products of polytopes [J].
Ehrenborg, R ;
Fox, H .
COMBINATORICA, 2003, 23 (03) :427-452
[8]   On posets and Hopf algebras [J].
Ehrenborg, R .
ADVANCES IN MATHEMATICS, 1996, 119 (01) :1-25
[9]   Coproducts and the cd-index [J].
Ehrenborg, R ;
Readdy, M .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (03) :273-299
[10]  
Gawrilow E, 2000, DMV SEMINAR, V29, P43