Ramanujan's mock theta functions

被引:21
作者
Griffin, Michael [1 ]
Ono, Ken [1 ]
Rolen, Larry [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
harmonic Maass form; modular form; radial limits;
D O I
10.1073/pnas.1300345110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268-277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan's original definition. Here, we prove that Ramanujan's examples do indeed satisfy his original definition.
引用
收藏
页码:5765 / 5768
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 2002, THESIS U UTRECHT UTR
[2]  
Berndt B.C., 1995, Ramanujan: Letters and Commentary
[3]  
Bringmann K., 2007, MATH ANN, V119, P323
[4]   The f(q) mock theta function conjecture and partition ranks [J].
Bringmann, Kathrin ;
Ono, Ken .
INVENTIONES MATHEMATICAE, 2006, 165 (02) :243-266
[5]   Dyson's ranks and Maass forms [J].
Bringmann, Kathrin ;
Ono, Ken .
ANNALS OF MATHEMATICS, 2010, 171 (01) :419-449
[6]   On two geometric theta lifts [J].
Bruinier, JH ;
Funke, J .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) :45-90
[7]  
Bruinier JH, 2002, LECT NOTES MATH, V1780, P1
[8]   Modular functions and the uniform distribution of CM points [J].
Duke, W .
MATHEMATISCHE ANNALEN, 2006, 334 (02) :241-252
[9]  
FAY JD, 1977, J REINE ANGEW MATH, V293, P142
[10]  
Folsom A, 2013, P RAM 125 C IN PRESS