A Semantic Similarity Supervised Autoencoder for Zero-Shot Learning

被引:4
作者
Shen, Fengli [1 ]
Lu, Zhe-Ming [1 ]
机构
[1] Zhejiang Univ, Sch Aeronaut & Astronaut, Hangzhou 310027, Peoples R China
关键词
zero-shot learning; autoencoder; image classification;
D O I
10.1587/transinf.2019EDL8176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This Letter proposes a autoencoder model supervised by semantic similarity for zero-shot learning. With the help of semantic similarity vectors of seen and unseen classes and the classification branch, our experimental results on two datasets are 7.3% and 4% better than the state-of-the-art on conventional zero-shot learning in terms of the averaged top-1 accuracy.
引用
收藏
页码:1419 / 1422
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 2019, PROC IEEECVF C COMPU
[2]   Multi-modal Cycle-Consistent Generalized Zero-Shot Learning [J].
Felix, Rafael ;
Kumar, B. G. Vijay ;
Reid, Ian ;
Carneiro, Gustavo .
COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 :21-37
[3]  
Frome A., 2013, Advances in neural information processing systems
[4]   Semantic Autoencoder for Zero-Shot Learning [J].
Kodirov, Elyor ;
Xiang, Tao ;
Gong, Shaogang .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4447-4456
[5]  
Liu S., 2018, ADV NEURAL INFORM PR, P2005
[6]   Automated flower classification over a large number of classes [J].
Nilsback, Maria-Elena ;
Zisserman, Andrew .
SIXTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING ICVGIP 2008, 2008, :722-729
[7]  
Schonfeld E., 2019, P IEEE C COMP VIS PA, P8247
[8]   A Simple Exponential Family Framework for Zero-Shot Learning [J].
Verma, Vinay Kumar ;
Rai, Piyush .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 :792-808
[9]  
Wah C., 2014, The Caltech
[10]   Feature Generating Networks for Zero-Shot Learning [J].
Xian, Yongqin ;
Lorenz, Tobias ;
Schiele, Bernt ;
Akata, Zeynep .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :5542-5551