A strong convergence theorem for contraction semigroups in Banach spaces

被引:74
作者
Xu, HK [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
关键词
D O I
10.1017/S000497270003519X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a Banach space version of a theorem of Suzuki [8]. More precisely we prove that if X is a uniformly convex Banach space with a weakly continuous duality map (for example, l(p) for 1 < p < infinity), if C is a closed convex subset of X, and if F = {T(t) : t >= 0} is a contraction semigroup on C such that Fix(F) not equal 0, then under certain appropriate assumptions made on the sequences {alpha(n)} and {t(n)} of the parameters, we show that the sequence {x(n)} implicitly defined by x(n) = alpha(n)u + (1 - alpha(n))T(t(n))x(n) for all n >= 1 converges strongly to a member of Fix(F).
引用
收藏
页码:371 / 379
页数:9
相关论文
共 50 条
[31]   Strong convergence theorems for commutative semigroups of continuous linear operators on Banach spaces [J].
Eshita, K ;
Takahashi, W .
TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (04) :531-550
[32]   Strong convergence theorems for fixed points of asymptotically nonexpansive semigroups in Banach spaces [J].
Piri, Hossein ;
Kumam, Poom .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[33]   A strong convergence theorem for maximal monotone operators in Banach spaces with applications [J].
Chidume, C. E. ;
De Souza, G. S. ;
Romanus, O. M. ;
Nnyaba, U., V .
CARPATHIAN JOURNAL OF MATHEMATICS, 2020, 36 (02) :229-240
[34]   A strong convergence theorem for quasi-equilibrium problems in Banach spaces [J].
Mehdi Mohammadi ;
G. Zamani Eskandani .
Acta Mathematica Scientia, 2022, 42 :221-232
[35]   A STRONG CONVERGENCE THEOREM FOR QUASI-EQUILIBRIUM PROBLEMS IN BANACH SPACES [J].
Mohammadi, Mehdi ;
Eskandani, G. Zamani .
ACTA MATHEMATICA SCIENTIA, 2022, 42 (01) :221-232
[36]   A strong and weak convergence theorem for resolvents of accretive operators in banach spaces [J].
Iemoto, Shigeru ;
Takahashi, Wataru .
TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (03) :915-928
[37]   A STRONG CONVERGENCE THEOREM FOR QUASI-EQUILIBRIUM PROBLEMS IN BANACH SPACES [J].
Mehdi MOHAMMADI ;
GZamani ESKANDANI .
ActaMathematicaScientia, 2022, 42 (01) :221-232
[38]   CONVERGENCE OF ORBITS OF NONEXPANSIVE SEMIGROUPS IN BANACH SPACES [J].
Atsushiba, Sachiko .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) :2105-2114
[39]   STRONG CONVERGENCE THEOREMS BY HYBRID METHOD FOR SEMIGROUPS OF NOT NECESSARILY CONTINUOUS MAPPINGS IN BANACH SPACES [J].
Alofi, A. S. ;
Hussain, N. ;
Takahashi, W. .
FIXED POINT THEORY, 2016, 17 (02) :237-253