Regulating the vertical phase distribution by fullerene-derivative in high performance ternary organic solar cells

被引:125
作者
Bi, Pengqing [1 ]
Xiao, Tong [2 ]
Yang, Xiaoyu [1 ]
Niu, Mengsi [1 ]
Wen, Zhenchuan [1 ]
Zhang, Kangning [1 ]
Qin, Wei [1 ]
So, Shu Kong [3 ,4 ]
Lu, Guanghao [2 ]
Hao, Xiaotao [1 ,5 ]
Liu, Hong [1 ]
机构
[1] Shandong Univ, State Key Lab Crystal Mat, Sch Phys, Jinan 250100, Shandong, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710054, Shaanxi, Peoples R China
[3] Hong Kong Baptist Univ, Dept Phys, Kowloon Tong, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Inst Adv Mat, Kowloon Tong, Hong Kong, Peoples R China
[5] Univ Melbourne, Sch Chem, ARC Ctr Excellence Exciton Sci, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金;
关键词
Vertical phase distribution; Non-fullerene acceptor; Ternary organic solar cells; Charge transport; ELECTRICAL CHARACTERISTICS; NONFULLERENE ACCEPTORS; NEUTRON REFLECTIVITY; X-RAY; EFFICIENCY; MORPHOLOGY; DONOR; RECOMBINATION; TEMPERATURE; SEPARATION;
D O I
10.1016/j.nanoen.2018.01.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The vertical phase distribution of components in bulk heterojunction is diversified in organic solar cells (OSCs). The electron donors (acceptors) can be accumulated (depleted) at the interface of active layer and charge extraction layer. The variation of vertical phase distribution significantly influences device performance because of its impact on the charge transport and charge recombination. In order to achieve favorable vertical phase distribution in OSCs based on poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl) benzo[1,2-c:4,5-c']dithiophene-4,8-dione)] (PBDB-T):3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene (ITIC), phenyl-C71-butyric-acid-methyl ester (PC71BM) was incorporated into the binary system to fabricate ternary OSCs. In the ternary blend, PC71BM can effectively regulate the phase distribution of PBDB-T and ITIC in vertical direction, which provides favorable vertical phase distribution for charge transport. Moreover, the addition of PC71BM can also effectively increase the pi-pi stacking coherence length of both donor and acceptor, which facilitates charge transport and reduces the bimolecular recombination. The addition of an appropriate quantity of PC71BM can obviously improve both fill factor and short-circuit current density of the OSC based on PBDB-T:ITIC while open-circuit voltage reduces only about 0.01 V, which indicates a rational low energy loss. Consequently, the ternary OSC exhibits a best PCE of 11.0% compared to the 9.6% PCE of the binary counterpart.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 57 条
[1]   Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT [J].
Ameri, Tayebeh ;
Khoram, Parisa ;
Heumueller, Thomas ;
Baran, Derya ;
Machui, Florian ;
Troeger, Anna ;
Sgobba, Vito ;
Guldi, Dirk M. ;
Halik, Marcus ;
Rathgeber, Silke ;
Scherf, Ullrich ;
Brabec, Christoph J. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (45) :19461-19472
[2]   Organic Ternary Solar Cells: A Review [J].
Ameri, Tayebeh ;
Khoram, Parisa ;
Min, Jie ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2013, 25 (31) :4245-4266
[3]   Versatile ternary organic solar cells: a critical review [J].
An, Qiaoshi ;
Zhang, Fujun ;
Zhang, Jian ;
Tang, Weihua ;
Deng, Zhenbo ;
Hu, Bin .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (02) :281-322
[4]   An Obvious Improvement in the Performance of Ternary Organic Solar Cells with "Guest" Donor Present at the "Host" Donor/Acceptor Interface [J].
Bi, Peng-Qing ;
Wu, Bo ;
Zheng, Fei ;
Xu, Wei-Long ;
Yang, Xiao-Yu ;
Feng, Lin ;
Zhu, Furong ;
Hao, Xiao-Tao .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) :23212-23221
[5]   Dual Forster resonance energy transfer effects in non-fullerene ternary organic solar cells with the third component embedded in the donor and acceptor [J].
Bi, Pengqing ;
Zheng, Fei ;
Yang, Xiaoyu ;
Niu, Mengsi ;
Feng, Lin ;
Qin, Wei ;
Hao, Xiaotao .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) :12120-12130
[6]   Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene) [J].
Blom, PWM ;
deJong, MJM ;
vanMunster, MG .
PHYSICAL REVIEW B, 1997, 55 (02) :R656-R659
[7]   Film-Depth-Dependent Light Absorption and Charge Transport for Polymer Electronics: A Case Study on Semiconductor/Insulator Blends by Plasma Etching [J].
Bu, Laju ;
Gao, Shuang ;
Wang, Weichen ;
Zhou, Ling ;
Feng, Shi ;
Chen, Xin ;
Yu, Demei ;
Li, Shengtao ;
Lu, Guanghao .
ADVANCED ELECTRONIC MATERIALS, 2016, 2 (12)
[8]   Recent Advances in Wide-Bandgap Photovoltaic Polymers [J].
Cai, Yunhao ;
Huo, Lijun ;
Sun, Yanming .
ADVANCED MATERIALS, 2017, 29 (22)
[9]  
Campoy-Quiles M., 2008, NAT MAT, V7
[10]   An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% [J].
Chen, Chun-Chao ;
Chang, Wei-Hsuan ;
Yoshimura, Ken ;
Ohya, Kenichiro ;
You, Jingbi ;
Gao, Jing ;
Hong, Zirou ;
Yang, Yang .
ADVANCED MATERIALS, 2014, 26 (32) :5670-+