Plant Thermoregulation: Energetics, Trait-Environment Interactions, and Carbon Economics

被引:135
作者
Michaletz, Sean T. [1 ,2 ]
Weiser, Michael D. [3 ]
Zhou, Jizhong [4 ,5 ,6 ,7 ]
Kaspari, Michael [3 ,8 ]
Helliker, Brent R. [9 ]
Enquist, Brian J. [1 ,10 ,11 ,12 ]
机构
[1] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA
[2] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA
[3] Univ Oklahoma, Dept Biol, EEB Grad Program, Norman, OK 73069 USA
[4] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA
[5] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA
[6] Tsinghua Univ, Sch Environm, State Key Lab Environm Simulat & Pollut Control, Beijing 100084, Peoples R China
[7] Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94270 USA
[8] Smithsonian Trop Res Inst, Balboa, Panama
[9] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[10] Santa Fe Inst, Santa Fe, NM 87501 USA
[11] IPlant Collaborat, Tucson, AZ 85721 USA
[12] Aspen Ctr Environm Studies, Aspen, CO 81611 USA
基金
美国国家科学基金会;
关键词
REBUILDING COMMUNITY ECOLOGY; GENERAL QUANTITATIVE THEORY; CONSTANT LEAF TEMPERATURE; DRY-MATTER CONTENT; FOREST STRUCTURE; ISOTOPE RATIOS; HEAT-TRANSFER; CONVERGENCE; LONGEVITY; ECOSYSTEM;
D O I
10.1016/j.tree.2015.09.006
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Building a more predictive trait-based ecology requires mechanistic theory based on first principles. We present a general theoretical approach to link traits and climate. We use plant leaves to show how energy budgets (i) provide a foundation for understanding thermoregulation, (ii) explain mechanisms driving trait variation across environmental gradients, and (iii) guide selection on functional traits via carbon economics. Although plants are often considered to be poikilotherms, the data suggest that they are instead limited homeotherms. Leaf functional traits that promote limited homeothermy are adaptive because homeothermy maximizes instantaneous and lifetime carbon gain. This theory provides a process-based foundation for trait-climate analyses and shows that future studies should consider plant (not only air) temperatures.
引用
收藏
页码:714 / 724
页数:11
相关论文
共 100 条
[1]   Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses [J].
Ackerly, DD ;
Knight, CA ;
Weiss, SB ;
Barton, K ;
Starmer, KP .
OECOLOGIA, 2002, 130 (03) :449-457
[2]   Functional traits explain variation in plant life history strategies [J].
Adler, Peter B. ;
Salguero-Gomez, Roberto ;
Compagnoni, Aldo ;
Hsu, Joanna S. ;
Ray-Mukherjee, Jayanti ;
Mbeau-Ache, Cyril ;
Franco, Miguel .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (02) :740-745
[3]   Trait-based tests of coexistence mechanisms [J].
Adler, Peter B. ;
Fajardo, Alex ;
Kleinhesselink, Andrew R. ;
Kraft, Nathan J. B. .
ECOLOGY LETTERS, 2013, 16 (10) :1294-1306
[4]  
Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1
[5]  
Arrhenius S., 1915, QUANTITATIVE LAWS BI
[6]   MAINTENANCE OF LEAF TEMPERATURE AND THE OPTIMIZATION OF CARBON GAIN IN RELATION TO WATER-LOSS IN A TROPICAL MANGROVE FOREST [J].
BALL, MC ;
COWAN, IR ;
FARQUHAR, GD .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1988, 15 (1-2) :263-276
[7]   Space and time dependence of temperature and freezing in evergreen leaves [J].
Ball, MC ;
Wolfe, J ;
Canny, M ;
Hofmann, M ;
Nicotra, AB ;
Hughes, D .
FUNCTIONAL PLANT BIOLOGY, 2002, 29 (11) :1259-1272
[8]   Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves [J].
Barbour, MM ;
Farquhar, GD .
PLANT CELL AND ENVIRONMENT, 2000, 23 (05) :473-485
[9]  
Bergman T. L., 2011, Introduction to heat transfer
[10]   PHOTOSYNTHETIC RESPONSE AND ADAPTATION TO TEMPERATURE IN HIGHER-PLANTS [J].
BERRY, J ;
BJORKMAN, O .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1980, 31 :491-543